276 research outputs found

    Small data global regularity for simplified 3-D Ericksen-Leslie's compressible hyperbolic liquid crystal model

    Full text link
    In this article, we consider the Ericksen-Leslie's hyperbolic system for compressible liquid crystal model in three spatial dimensions. Global regularity for small and smooth initial data near equilibrium is proved for the case that the system is a nonlinear coupling of compressible Navier-Stokes equations with wave map to S2\mathbb{S}^2. Our argument is a combination of vector field method and Fourier analysis. The main strategy to prove global regularity relies on an interplay between the control of high order energies and decay estimates, which is based on the idea inspired by the method of space-time resonances. In particular the different behaviors of the decay properties of the density and velocity field for compressible fluids at different frequencies play a key role.Comment: 61 pages; all comments wellcom

    Photocatalytic Degradation of Dimethoate in Bok Choy Using Cerium-Doped Nano Titanium Dioxide

    Get PDF
    Dimethoate, a systemic insecticide, has been used extensively in vegetable production. Insecticide residues in treated vegetables, however, pose a potential risk to consumers. Photocatalytic degradation is a new alternative to managing pesticide residues. In this study, the degradation of dimethoate in Bok choy was investigated under the field conditions using cerium-doped nano titanium dioxide (TiO2/Ce) hydrosol as a photocatalyst. The results show that TiO2/Ce hydrosol can accelerate the degradation of dimethoate in Bok choy. Specifically, the application of TiO2/Ce hydrosol significantly increased the reactive oxygen species (ROS) contents in the treated Bok choy, which speeds up the degradation of dimethoate. Ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) analysis detected three major degradation products, including omethoate, O,O,S-trimethyl thiophosphorothioate, and 1,2-Bis (acetyl-N-methyl-) methane disulfide. Two potential photodegradation pathways have been proposed based on the intermediate products. To understand the relationship between photodegradation and the molecular structure of target insecticides, we investigated the bond length, Mulliken atomic charge and frontier electron density of dimethoate using ab initio quantum analysis. These results suggest the P = S, P-S and S-C of dimethoate are the initiation sites for the photocatalytic reaction in Bok choy, which is consistent with our empirical data

    North American Land Data Assimilation System: A Framework for Merging Model and Satellite Data for Improved Drought Monitoring

    Get PDF
    Drought is a pervasive natural climate hazard that has widespread impacts on human activity and the environment. In the United States, droughts are billion-dollar disasters, comparable to hurricanes and tropical storms and with greater economic impacts than extratropical storms, wildfires, blizzards, and ice storms combined (NCDC, 2009). Reduction of the impacts and increased preparedness for drought requires the use and improvement of monitoring and prediction tools. These tools are reliant on the availability of spatially extensive and accurate data for representing the occurrence and characteristics (such as duration and severity) of drought and their related forcing mechanisms. It is increasingly recognized that the utility of drought data is highly dependent on the application (e.g., agricultural monitoring versus water resource management) and time (e.g., short- versus long-term dryness) and space (e.g., local versus national) scales involved. A comprehensive set of drought indices that considers all components of the hydrological–ecological–human system is necessary. Because of the dearth of near-real-time in situ hydrologic data collected over large regions, modeled data are often useful surrogates, especially when combined with observations from remote sensing and in situ sources. This chapter provides an overview of drought-related activities associated with the North American Land Data Assimilation System (NLDAS), which purports to provide an incremental step toward improved drought monitoring and forecasting. The NLDAS was originally conceived to improve short-term weather forecasting by providing better land surface initial conditions for operational weather forecast models. This reflects increased recognition of the role of land surface water and energy states, such as surface temperature, soil moisture, and snowpack, to atmospheric processes via feedbacks through the coupling of the water and energy cycles. Phase I of the NLDAS (NLDAS-1; Mitchell et al., 2004) made tremendous progress toward developing an operational system that gave high-resolution land hydrologic products in near real time. The system consists of multiple land surface models (LSMs) that are driven by an observation-based meteorological data set both in real time and retrospectively. This work resulted in a series of scientific papers that evaluated the retrospective data (meteorology and model output) in terms of their ability to reflect observations of the water and energy cycles and the uncertainties in the simulations as measured by the spread among individual models (Pan et al., 2003; Robock et al., 2003; Sheffield et al., 2003; Lohmann et al., 2004; Mitchell et al., 2004; Schaake et al., 2004). These evaluations led to the implementation of significant improvements to the LSMs in the form of new model physics and adjustments to parameter values and to the methods and input meteorological data (Xia et al., 2012). The system has since expanded in scope to include model intercomparison studies, real-time monitoring, and hydrologic prediction and has inspired other activities such as high-resolution land surface modeling and global land data assimilation systems (e.g., the Global Land Data Assimilation System [GLDAS], Rodell et al., 2004; the Land Information System [LIS], Kumar et al., 2006)

    North American Land Data Assimilation System: A Framework for Merging Model and Satellite Data for Improved Drought Monitoring

    Get PDF
    Drought is a pervasive natural climate hazard that has widespread impacts on human activity and the environment. In the United States, droughts are billion-dollar disasters, comparable to hurricanes and tropical storms and with greater economic impacts than extratropical storms, wildfires, blizzards, and ice storms combined (NCDC, 2009). Reduction of the impacts and increased preparedness for drought requires the use and improvement of monitoring and prediction tools. These tools are reliant on the availability of spatially extensive and accurate data for representing the occurrence and characteristics (such as duration and severity) of drought and their related forcing mechanisms. It is increasingly recognized that the utility of drought data is highly dependent on the application (e.g., agricultural monitoring versus water resource management) and time (e.g., short- versus long-term dryness) and space (e.g., local versus national) scales involved. A comprehensive set of drought indices that considers all components of the hydrological–ecological–human system is necessary. Because of the dearth of near-real-time in situ hydrologic data collected over large regions, modeled data are often useful surrogates, especially when combined with observations from remote sensing and in situ sources. This chapter provides an overview of drought-related activities associated with the North American Land Data Assimilation System (NLDAS), which purports to provide an incremental step toward improved drought monitoring and forecasting. The NLDAS was originally conceived to improve short-term weather forecasting by providing better land surface initial conditions for operational weather forecast models. This reflects increased recognition of the role of land surface water and energy states, such as surface temperature, soil moisture, and snowpack, to atmospheric processes via feedbacks through the coupling of the water and energy cycles. Phase I of the NLDAS (NLDAS-1; Mitchell et al., 2004) made tremendous progress toward developing an operational system that gave high-resolution land hydrologic products in near real time. The system consists of multiple land surface models (LSMs) that are driven by an observation-based meteorological data set both in real time and retrospectively. This work resulted in a series of scientific papers that evaluated the retrospective data (meteorology and model output) in terms of their ability to reflect observations of the water and energy cycles and the uncertainties in the simulations as measured by the spread among individual models (Pan et al., 2003; Robock et al., 2003; Sheffield et al., 2003; Lohmann et al., 2004; Mitchell et al., 2004; Schaake et al., 2004). These evaluations led to the implementation of significant improvements to the LSMs in the form of new model physics and adjustments to parameter values and to the methods and input meteorological data (Xia et al., 2012). The system has since expanded in scope to include model intercomparison studies, real-time monitoring, and hydrologic prediction and has inspired other activities such as high-resolution land surface modeling and global land data assimilation systems (e.g., the Global Land Data Assimilation System [GLDAS], Rodell et al., 2004; the Land Information System [LIS], Kumar et al., 2006)

    CCL21/CCR7 Promotes G2/M Phase Progression via the ERK Pathway in Human Non-Small Cell Lung Cancer Cells

    Get PDF
    C-C chemokine receptor 7 (CCR7) contributes to the survival of certain cancer cell lines, but its role in the proliferation of human non-small cell lung cancer (NSCLC) cells remains vague. Proliferation assays performed on A549 and H460 NSCLC cells using Cell Counting Kit-8 indicated that activation of CCR7 by its specific ligand, exogenous chemokine ligand 21 (CCL21), was associated with a significant linear increase in cell proliferation with duration of exposure to CCL21. The CCL21/CCR7 interaction significantly increased the fraction of cells in the G2/M phase of the cell cycle as measured by flow cytometry. In contrast, CCL21/CCR7 had no significant influence on the G0/G1 and S phases. Western blot and real-time PCR indicated that CCL21/CCR7 significantly upregulated expression of cyclin A, cyclin B1, and cyclin-dependent kinase 1 (CDK1), which are related to the G2/M phase transition. The expression of cyclin D1 and cyclin E, which are related to the G0/G1 and G1/S transitions, was not altered. The CCL21/CCR7 interaction significantly enhanced phosphorylation of extracellular signal-regulated kinase (P-ERK) but not Akt, as measured by Western blot. LY294002, a selective inhibitor of PI3K that prevents activation of the downstream Akt, did not weaken the effect of CCL21/CCR7 on P-ERK. Coimmunoprecipitation further confirmed that there was an interaction between P-ERK and cyclin A, cyclin B1, or CDK1, particularly in the presence of CCL21. CCR7 small interfering RNA or PD98059, a selective inhibitor of MEK that disrupts the activation of downstream ERK, significantly abolished the effects of exogenous CCL21. These results suggest that CCL21/CCR7 contributes to the time-dependent proliferation of human NSCLC cells by upregulating cyclin A, cyclin B1, and CDK1 potentially via the ERK pathway

    深部軟岩坑道用ハイコンベックス・ストリップボルトを用いた複合支保技術に関する研究

    Get PDF
    Based on the systematic analysis of mechanical characteristics for deep roadway excavated in soft strata, the high convex strip-bolting support technology was put forward, and a numerical analysis was carried out by FLAC3D. The process of general bolting support and high convex strip-bolting support of deep soft rock roadway were simulated. The results indicate that the convex bed of strip-band can adapt to large deformation of high pre-stressed bolting, and the high strength and high rigidity of strip can bear large axial force and moment of flexion. In addition, bolting and anchoring combined support can control the deformation of rock masses by transferring the strength of deep strata, and bolt-grouting can form stress-relief region in deep and generates high strength invert arch at shallow which can afford some support resistances. A case study is also presented and the results of field measurement show that the new support system is suitable for roadways excavated in weak rocks.特集 : 「資源、新エネルギー、環境、防災研究国際セミナー

    Overexpression of CARMA3 in Non-Small-Cell Lung Cancer Is Linked for Tumor Progression

    Get PDF
    We aimed to investigate the clinical significance of the expression of novel scaffold protein CARMA3 in non-small-cell lung cancer (NSCLC) and the biological function of CARMA3 in NSCLC cell lines. We observed moderate to high CARMA3 staining in 68.8% of 141 NSCLC specimens compared to corresponding normal tissues. The overexpression of CARMA3 was significantly correlated with TNM stage (P = 0.022) and tumor status (P = 0.013). CARMA3 upregulation also correlated with a shorter survival rate of patients of nodal status N0 (P = 0.042)as well as the expression of epidermal growth factor receptor (EGFR) (P = 0.009). In EGFR mutation positive cases, CARMA3 expression was much higher (87.5%) compared to non-mutation cases (66.1%). In addition, we observed that knockdown of CARMA3 inhibits tumor cell proliferation and invasion, and induces cell cycle arrest at the boundary between the G1 and S phase. We further demonstrated a direct link between CARMA3 and NF-κB activation. The change of biological behavior in CARMA3 knockdown cells may be NF-κB-related. Our findings demonstrated, for the first time, that CARMA3 was overexpressed in NSCLC and correlated with lung cancer progression, EGFR expression, and EGFR mutation. CARMA3 could serve as a potential companion drug target, along with NF-kB and EGFR in EGFR-mutant lung cancers
    corecore