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10.1  INTRODUCTION

Drought	is	a	pervasive	natural	climate	hazard	that	has	widespread	impacts	on	human	
activity	and	the	environment.	In	the	United	States,	droughts	are	billion-dollar	disas-
ters,	comparable	to	hurricanes	and	tropical	storms	and	with	greater	economic	impacts	
than	 extratropical	 storms,	 wildfires,	 blizzards,	 and	 ice	 storms	 combined	 (NCDC,	
2009).	Reduction	of	the	impacts	and	increased	preparedness	for	drought	requires	the	
use	and	improvement	of	monitoring	and	prediction	tools.	These	tools	are	reliant	on	
the	availability	of	spatially	extensive	and	accurate	data	for	representing	the	occur-
rence	and	characteristics	(such	as	duration	and	severity)	of	drought	and	their	related	
forcing	mechanisms.	 It	 is	 increasingly	 recognized	 that	 the	utility	of	drought	data	
is	 highly	 dependent	 on	 the	 application	 (e.g.,	 agricultural	 monitoring	 versus	 water	
resource	 management)	 and	 time	 (e.g.,	 short-	 versus	 long-term	 dryness)	 and	 space	
(e.g.,	local	versus	national)	scales	involved.	A	comprehensive	set	of	drought	indices	
that	considers	all	components	of	the	hydrological–ecological–human	system	is	nec-
essary.	Because	of	the	dearth	of	near-real-time	in	situ	hydrologic	data	collected	over	
large	regions,	modeled	data	are	often	useful	surrogates,	especially	when	combined	
with	observations	from	remote	sensing	and	in	situ	sources.

This	chapter	provides	an	overview	of	drought-related	activities	associated	with	
the	North	American	Land	Data	Assimilation	System	(NLDAS),	which	purports	to	
provide	an	incremental	step	toward	improved	drought	monitoring	and	forecasting.	
The	NLDAS	was	originally	 conceived	 to	 improve	 short-term	weather	 forecasting	
by	providing	better	land	surface	initial	conditions	for	operational	weather	forecast	
models.	 This	 reflects	 increased	 recognition	 of	 the	 role	 of	 land	 surface	 water	 and	
energy	states,	such	as	surface	temperature,	soil	moisture,	and	snowpack,	to	atmo-
spheric	processes	via	feedbacks	through	the	coupling	of	the	water	and	energy	cycles.	
Phase	I	of	the	NLDAS	(NLDAS-1;	Mitchell	et	al.,	2004)	made	tremendous	progress	
toward	developing	an	operational	system	that	gave	high-resolution	land	hydrologic	
products	 in	 near	 real	 time.	 The	 system	 consists	 of	 multiple	 land	 surface	 models	
(LSMs)	that	are	driven	by	an	observation-based	meteorological	data	set	both	in	real	
time	and	retrospectively.	This	work	resulted	in	a	series	of	scientific	papers	that	evalu-
ated	the	retrospective	data	(meteorology	and	model	output)	in	terms	of	their	ability	
to	reflect	observations	of	 the	water	and	energy	cycles	and	the	uncertainties	 in	 the	
simulations	as	measured	by	the	spread	among	individual	models	(Pan	et	al.,	2003;	
Robock	et	 al.,	 2003;	Sheffield	et	 al.,	 2003;	Lohmann	et	 al.,	 2004;	Mitchell	 et	 al.,	
2004;	Schaake	et	al.,	2004).	These	evaluations	led	to	the	implementation	of	signifi-
cant	improvements	to	the	LSMs	in	the	form	of	new	model	physics	and	adjustments	to	
parameter	values	and	to	the	methods	and	input	meteorological	data	(Xia	et	al.,	2012).	
The	 system	 has	 since	 expanded	 in	 scope	 to	 include	 model	 intercomparison	 stud-
ies,	real-time	monitoring,	and	hydrologic	prediction	and	has	inspired	other	activities	
such	as	high-resolution	land	surface	modeling	and	global	land	data	assimilation	sys-
tems	(e.g.,	the	Global	Land	Data	Assimilation	System	[GLDAS],	Rodell	et	al.,	2004;	
the	Land	Information	System	[LIS],	Kumar	et	al.,	2006).

The	 second	 phase	 of	 the	 project	 (NLDAS-2)	 extended	 the	 original	 concept	
(improved	 weather	 forecasting)	 in	 recognition	 of	 the	 value	 of	 the	 NLDAS	 prod-
ucts	 to	 the	 wider	 scientific	 community	 and	 stakeholders	 interested	 in	 hydrologic	
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processes	 and	data.	A	key	part	 of	 this	 impetus	was	 to	provide	water-related	data	
to	 support	 water	 resources	 management,	 energy	 demand	 assessment,	 agricultural	
monitoring,	fire	risk	assessment,	drought	monitoring,	and	flood	prediction.	In	par-
ticular,	the	National	Centers	for	Environmental	Prediction	(NCEP)	Environmental	
Modeling	 Center	 (EMC)	 has	 collaborated	 with	 partners	 at	 the	 National	 Oceanic	
and	Atmospheric	Administration	(NOAA)	Climate	Program	Office	(CPO)	Climate	
Prediction	Program	of	the	Americas	(CPPA)	to	develop	an	NLDAS	drought	monitor-
ing	and	forecast	system,	which	is	the	focus	of	this	chapter.	This	system	will	provide	
a	single	stream	of	data	 that	can	be	used	for	drought	monitoring	 in	support	of	 the	
National	Integrated	Drought	Information	System	(NIDIS;	http://www.drought.gov),	
which	is	a	federally	mandated	initiative	to	provide	improved	and	consistent	national	
drought	information.	Key	characteristics	of	the	NLDAS-2	drought	products	support-
ing	this	activity	include	improved	reliability	in	model	output	demonstrated	through	
rigorous	 LSM	 intercomparisons;	 the	 ability	 to	 detect	 the	 onset,	 extent,	 and	 dura-
tion	of	major	drought	events;	the	capability	to	perform	long-term	simulations	so	that	
robust	climatologies	can	be	calculated	for	meaningful	anomaly	detection;	and	rapid	
updating	in	near	real	time.	To	this	end,	the	NLDAS-2	has	focused	on	reducing	the	
differences	in	calculated	values	among	models	and	improving	the	representation	of	
measured	land	fluxes	and	states	to	improve	the	reliability	of	the	results.	The	project	
has	also	evaluated	model	depiction	of	major	historic	drought	events	over	multiple	
decades	to	establish	the	consistency	in	the	information	and	develop	a	reliable	clima-
tology,	and	demonstrated	its	use	in	an	operational	setting	at	the	EMC.	In	addition,	
the	system	has	been	enhanced	through	the	implementation	of	a	seasonal	forecasting	
component	that	has	benefited	from	the	improved	land	surface	states	that	are	essential	
to	seasonal	hydrologic	prediction	(Li	et	al.,	2009).

This	 chapter	describes	 the	development	 and	application	of	NLDAS-2	products	
for	 drought	 monitoring	 and	 seasonal	 forecasting,	 as	 well	 as	 future	 challenges	 to	
improving	the	system.	First,	an	overview	of	the	long-term	retrospective	simulations	
in	terms	of	their	depiction	of	drought	and	highlights	of	some	of	the	major	drought	
events	over	the	United	States	in	the	past	30	years	are	presented.	Second,	we	explore	
how	the	models	differ	in	their	depiction	of	drought	at	various	temporal	and	spatial	
scales,	which	relates	to	the	reliability	of	 the	predictions.	An	overview	of	the	real-
time	 drought	 monitor	 and	 seasonal	 forecast	 systems	 is	 then	 provided	 with	 recent	
examples.	Finally,	we	discuss	the	potential	for	augmenting	the	system	with	expanded	
use	of	remote	sensing	data.	In	particular,	we	assess	the	utility	of	remote	sensing–
based	estimates	of	soil	moisture	for	drought	monitoring	and	discuss	how	they	might	
be	used	in	a	model-based	drought	assessment	such	as	the	NLDAS	to	provide	better	
predictions,	for	example,	in	regions	with	sparse	precipitation	measurement	networks.

10.2  NLDAS APPROACH TO DROUGHT MONITORING

10.2.1  Overview Of NLDAS-2

NLDAS-2	 is	a	core	project	of	 the	NCEP	EMC	funded	by	NOAA’s	CPPA	with	col-
laboration	 from	 several	 groups,	 including	 the	 National	 Aeronautics	 and	 Space	
Administration	(NASA)	Goddard	Space	Flight	Center	(GSFC),	Princeton	University,	
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the	National	Weather	Service	(NWS)	Office	of	Hydrological	Development	(OHD),	the	
University	of	Washington,	and	NCEP’s	CPC.	The	system	comprises	three	parts:	a	28	
year	(1979–2007)	retrospective	simulation	component	that	forms	a	climatology	against	
which	 current	 conditions	 can	 be	 assessed,	 a	 real-time	 monitoring	 component	 that	
updates	hydrologic	fields	daily,	and	a	forecast	component	that	makes	seasonal	forecasts	
on	a	monthly	basis	using	ensemble	(probabilistic)	forecast	techniques	with	lead	times	up	
to	6	months.	Each	of	these	components	makes	use	of	remote	sensing	data	that	are	com-
bined	with	ground	observations	and	atmospheric	model	data	to	provide	input	data	and	
boundary	conditions	for	the	LSMs.	The	remote	sensing	data	include	precipitation	data,	
surface	shortwave	radiation,	and	vegetation	spatial	distribution	and	characteristics.

10.2.2  NLDAS-2 MODeLS

The	system	incorporates	four	LSMs:	the	Noah,	Mosaic,	Variable	Infiltration	Capacity	
(VIC),	and	Sacramento	(SAC)	models.	The	Noah	model	was	developed	as	 the	 land	
component	in	the	NOAA/NCEP	mesoscale	Eta	model	(Betts	et	al.,	1997;	Chen	et	al.,	
1997;	Ek	et	al.,	2003)	and	is	the	land	model	in	the	Weather	Research	and	Forecasting	
(WRF)	regional	atmospheric	model	and	the	NOAA/NCEP	coupled	Climate	Forecast	
System	 (CFS)	 and	 Global	 Forecast	 System	 (GFS)	 for	 short-term	 and	 medium-term	
weather	 forecasting,	 respectively.	 The	 Mosaic	 model	 was	 developed	 for	 use	 in	 the	
NASA	global	climate	model	 (Koster	and	Suarez,	1994,	1996).	The	VIC	model	 is	a	
macroscale,	semidistributed	hydrologic	model	(Liang	et	al.,	1994;	Wood	et	al.,	1997)	
that	was	developed	at	the	University	of	Washington	and	Princeton	University.	The	SAC	
model	was	developed	as	a	lumped	conceptual	hydrologic	model	(Burnash	et al.,	1973),	
calibrated	for	small	catchments	and	used	operationally	at	NWS	River	Forecast	Centers	
(RFC).	 It	 is	 run	 in	a	semidistributed	mode	for	NLDAS.	These	models	simulate	 the	
coupled	water	and	energy	cycles	at	the	earth’s	surface	at	varying	degrees	of	complexity.	
However,	the	SAC	model	only	simulates	the	water	cycle.	Each	model	has	unique	attri-
butes	that	reflect	the	origin	of	their	development	either	as	a	hydrologic	model	or	a	Soil	
Vegetation	Atmosphere	Transfer	(SVAT)	model,	 intended	to	serve	as	 the	 land	com-
ponent	in	atmospheric	and	climate	models.	For	example,	the	VIC	and	Mosaic	models	
use	a	unique	tiling	scheme	to	represent	the	heterogeneity	of	vegetation	within	a	model	
grid	cell.	The	Noah	and	SAC	models	use	a	single	dominant	vegetation	type	for	each	
grid	cell.

Each	of	 these	models	 is	 run	over	a	common	spatial	domain	on	a	regular	1/8th	
degree	(∼12	km)	grid	that	covers	the	conterminous	United	States,	northern	Mexico,	
and	southern	Canada	(125°–67°W	and	25°–53°N).	They	share	a	common	land	mask,	
underlying	elevation,	hourly	input	surface	meteorological	forcing,	soil	texture,	veg-
etation	 classes	 and	 distribution,	 streamflow	 network,	 streamflow	 routing	 model,	
and	 input	 and	 output	 file	 format.	 Common	 hourly	 output	 fields	 from	 each	 model	
include	surface	state	variables	such	as	soil	moisture,	soil	temperature,	snow	water	
equivalent,	surface	fluxes	(e.g.,	 latent,	 sensible,	and	ground	heat	flux),	and	runoff.	
Although	all	models	use	common	maps	of	vegetation	and	soil	classes,	 they	retain	
their	unique	soil	and	vegetation	parameter	values	such	as	root	depth	and	density,	dif-
ferent	soil	column	layering	(number	and	thickness	of	layers),	and	different	seasonal	
cycles	of	vegetation	characteristics.	The	vegetation	classification	was	derived	from	
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the	University	of	Maryland	Advanced	Very	High	Resolution	Radiometer	(AVHRR)-
based	data	set	of	Hansen	et	al.	(2000).	All	models	specify	the	seasonality	of	vegeta-
tion	on	a	climatological	basis	using	AVHRR-based	data.	For	Mosaic,	SAC,	and	VIC,	
values	of	Leaf	Area	Index	(LAI)	and	its	seasonal	cycle	are	derived	from	AVHRR-
based	Normalized	Difference	Vegetation	Index	(NDVI)	data	(Myneni	et	al.,	1997).	
Noah	uses	the	global,	monthly	5	year	climatology	of	the	green	vegetation	fraction	
(GVF)	derived	by	Gutman	and	Ignatov	(1998)	from	AVHRR-based	NDVI.	Runoff	
and	 baseflow	 from	 each	 model	 are	 routed	 using	 a	 common	 river	 routing	 scheme	
(Lohmann	et	al.,	2004)	to	produce	streamflow	at	selected	gauging	points	for	com-
parison	to	measurements	and	analysis	of	flow	characteristics.

10.2.3   MeteOrOLOgicAL fOrciNgS AND retrOSpective 
(1979–2007) SiMuLAtiON

The	atmospheric	forcings	that	drive	the	models	are	derived	from	a	combination	of	
data	from	atmospheric	model	reanalysis,	ground	measurements,	and	satellite	remote	
sensing.	The	underlying	data	set	comes	from	North	American	Regional	Reanalysis	
(NARR;	Mesinger	et	al.,	2006)	products	with	a	32	km	spatial	and	3	h	temporal	reso-
lution.	The	data	 set	 includes	2	m	 (above	 the	ground	 surface)	 air	 temperature,	 2	m	
specific	humidity,	10	m	wind	speed,	surface	pressure,	precipitation,	incoming	solar	
radiation,	and	incoming	longwave	radiation.	These	are	interpolated	to	the	1/8th	degree	
(∼12	km)	spatial	resolution	and	1	h	temporal	resolution	of	the	NLDAS	grid,	account-
ing	for	changes	in	elevation	and	solar	angle	based	on	methods	developed	in	NLDAS-1	
(Cosgrove	et	al.,	2003).	Although	the	NARR	improves	on	previous	global	reanalyzes	
in	terms	of	its	depiction	of	near-surface	meteorology,	especially	through	the	assimi-
lation	of	gauge	precipitation	data,	some	biases	still	remain,	and	for	some	variables	
(i.e.,	 precipitation	 and	 downward	 surface	 shortwave	 radiation),	 observational	 data	
are	used	instead	of	the	NARR.	Precipitation	is	anchored	to	the	CPC	unified	gauge-
based	precipitation	analysis	with	orographic	enhancements	derived	from	Parameter-
elevation	Regressions	on	Independent	Slopes	Model	data	(PRISM;	Daly	et	al.,	1994),	
with	NARR	precipitation	data	used	 in	parts	 of	Canada	 and	Mexico	where	gauge	
density	is	low.	The	daily	data	are	disaggregated	to	hourly	time	steps	using	ground-
based	Doppler	radar	data	and	remote	sensing	data	from	the	NOAA	CPC	Morphing	
Technique	 (CMORPH)	 (Joyce	 et	 al.,	 2004).	 For	 shortwave	 radiation,	 a	 large	 bias	
in	the	NARR	was	removed	by	scaling	it	to	match	the	remote	sensing–based	prod-
uct	of	Pinker	et	al.	(2003),	which	uses	data	from	NOAA	Geostationary	Operational	
Environmental	 Satellites	 (GOES).	 Details	 of	 the	 NLDAS-2	 forcings	 are	 given	 at	
http://www.emc.ncep.noaa.gov/mmb/nldas/LDAS8th/forcing/forcing_narr.shtml.	
The	 four	 models	 were	 run	 retrospectively	 for	 the	 period	 1979–2007.	 Each	 model	
simulation	was	initialized	from	a	“spin-up”	simulation	run	for	1979–1995	so	that	the	
moisture	and	temperature	states	were	brought	to	equilibrium.

10.2.4  DrOught iNDiceS

As	 the	 full	 terrestrial	 water	 and	 energy	 cycles	 (except	 for	 the	 SAC	 model)	 are	
represented	in	the	NLDAS,	it	 is	possible	to	depict	drought	in	terms	of	any	one	or	
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combination	 of	 hydrologic	 components	 such	 as	 precipitation,	 streamflow,	 and	
soil	moisture.	The	NLDAS-2	 real-time	monitor	provides	a	 range	of	drought	 indi-
ces	(see Section	10.4),	including	daily,	weekly,	and	monthly	anomalies,	as	well	as	
percentiles	of	various	hydrologic	fields	(soil	moisture,	snow	water	equivalent,	total	
runoff,	streamflow,	evaporation,	precipitation)	output	from	the	four	LSMs	on	their	
common	1/8th	degree	grid.

Here	we	focus	on	soil	moisture,	given	its	role	as	an	aggregator	in	the	hydrologic	
system,	reflecting	precipitation	and	snowmelt	inputs	and	the	loss	of	water	from	the	
system	via	evapotranspiration,	runoff,	and	drainage.	Soil	moisture	forms	the	basis	
for	improved	short-term	and	seasonal	weather	prediction,	through	exertion	of	control	
over	water	and	energy	exchange	with	the	atmosphere.	Soil	moisture	fields	can	also	be	
used	for	seasonal	hydrologic	prediction	by	providing	antecedent	states	that	are	cru-
cial	to	flood	prediction,	as	well	as	future	drought	emergence.	In	this	chapter,	drought	
is	shown	in	terms	of	monthly	mean	soil	moisture	percentiles,	which	normalize	the	
data	with	respect	to	climatological	values	for	each	month	at	a	1/8th	model	grid	cell	
resolution.	This	approach	has	been	successfully	used	in	model-based	drought	stud-
ies	for	the	United	States	(Sheffield	et	al.,	2004;	Andreadis	et	al.,	2005;	Wang	et	al.,	
2009)	and	globally	(Sheffield	and	Wood,	2007,	2008a;	Wang	et	al.,	2010)	and	in	the	
assessment	of	drought	under	projected	future	climates	(Sheffield	and	Wood,	2008b).	
The	20th	percentile	was	chosen	as	the	threshold	for	drought,	which	has	been	used	in	
previous	studies	(Andreadis	et	al.,	2005;	Sheffield	et	al.,	2009a),	as	well	as	in	opera-
tional	systems	such	as	the	U.S.	and	North	American	Drought	Monitors	(Lawrimore	
et	al.,	2002;	Svoboda	et	al.,	2002).

10.3  RESULTS FROM RETROSPECTIVE SIMULATIONS

We	begin	by	providing	an	overview	of	historic	drought	as	represented	by	the	retro-
spective	simulations	from	the	four	models.	An	essential	element	of	drought	moni-
toring	is	the	background	climatology	to	which	current	and	future	conditions	can	be	
compared	and	dry	anomalies	detected	within	an	extended	historical	context.	The	
use	of	multiple	models	helps	to	quantify	the	uncertainties	due	to	model	physics	and	
parameterizations,	but	we	also	calculate	a	multi-model	 ensemble	 (MME)	average	
that	represents	a	best	estimate	of	drought	conditions	given	these	model	uncertainties.	
The	multi-model	average	is	calculated	by	averaging	the	percentiles	of	the	four	mod-
els	and	then	recalculating	percentile	values	with	respect	to	the	multi-model	average,	
as	the	model	averaging	will	tend	to	reduce	extreme	values	(Wang	et	al.,	2009,	2010).

Figure	 10.1	 shows	 soil	 moisture	 percentiles	 averaged	 over	 the	 continental	
United	States	and	regionally	for	the	multi-model	average	(calculated	from	the	four	
NLDAS-2	LSMs).	The	 regions	are	based	on	 the	NWS	RFC	regional	delineations	
shown	 in	 Figure	 10.2.	 In	 general,	 the	 spread	 among	 the	 models	 was	 very	 small,	
especially	when	averaged	over	the	whole	United	States	and	for	drier	regions	in	the	
West	(e.g.,	California–Nevada	RFC).	Despite	the	spin-up	of	the	model	states,	there	
are	still	noticeable	differences	at	the	beginning	of	the	time	series	(i.e.,	the	first	year,	
1979),	particularly	for	the	drier	western	regions,	where	the	model	states	used	for	the	
initial	conditions	may	not	have	reached	equilibrium.	Although	averaging	over	 the	
United	States	smoothes	the	temporal	variations	in	soil	moisture	time	series,	some	
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periods	 in	 the	 early	 1980s,	 late	 1980s,	 and	 early	 2000s	 are	 noticeably	 drier	 than	
normal,	with	large	areas	of	drought	within	the	regions	during	these	periods	(shown	
in	Figure	10.3)	based	on	a	20th	percentile	soil	moisture	threshold	for	drought.	The	
peak	 areal	 percentage	 of	 the	 CONUS	 that	 is	 in	 drought	 for	 the	 MME	 is	 54%	 in	
June	1988.	Regionally,	 the	more	humid	eastern	regions	(bottom	graphs)	exhibited	
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FIGURE 10.1  A	30	year	time	series	(1979–2008)	of	soil	moisture	percentiles	averaged	over	
the	continental	United	States	and	NWS	RFC	regions	for	the	multi-model	mean	(calculated	
from	the	four	NLDAS-2	LSMs).	The	gray	shading	represents	the	range	in	the	models.	The	
regions	are	ordered	from	west	(upper	panels)	to	east	(lower	panels).
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greater	variability	than	the	drier	western	regions	(upper	graphs)	and	also	had	a	larger	
spread	among	the	model	results.	The	largest	differences	among	the	models	generally	
occurred	during	wet	periods	following	a	drought	(e.g.,	during	2000	in	the	Ohio	Basin	
(OHRFC)	 and	 during	 2003–2004	 in	 the	 Colorado	 Basin	 (CBRFC);	 Figure	 10.2),	
which	indicates	that	the	differences	are	primarily	derived	from	how	each	individual	
model	partitions	precipitation	and	propagates	hydrologic	anomalies	through	the	sys-
tem	rather	than	how	the	models	depict	drying.

Figure	10.4	 shows	 the	 spatial	 extent	and	severity	of	 four	major	drought	events	
in	the	United	States	(1988,	1996,	2002,	and	2007)	as	simulated	by	the	models	and	
the	MME.	The	1988	drought	spanned	the	central	United	States	and	northern	Great	
Plains	 (Lawford,	 1992;	 Trenberth	 and	 Branstator,	 1992)	 and	 had	 the	 largest	 eco-
nomic	impacts	of	any	drought	or	natural	hazard	in	the	United	States,	totaling	∼$39	
billion	 in	 losses	 (Riebsame	et	 al.,	 1991)	 (only	 surpassed	by	Hurricane	Katrina	 in	
total	 economic	 impacts),	 mainly	 because	 of	 its	 geographic	 extent	 over	 regions	 of	
high	agricultural	intensity	(e.g.,	U.S.	Corn	Belt)	and	population	density	(e.g.,	eastern	
United	States).	This	broad	extent	is	well	captured	by	the	four	models,	as	shown	in	
Figure	10.4.	The	1996	drought	over	Texas	and	parts	of	 the	Southwest	 resulted	 in	
estimated	losses	of	$6	billion	in	Texas	alone	(Wilhite,	2000).	Again,	the	four	models	
capture	the	broad	pattern	of	the	drought,	but	the	differences	between	models	can	be	
large.	For	example,	in	northwestern	Texas,	the	SAC	model	does	not	depict	drought	
conditions,	 in	contrast	 to	 the	other	models.	The	2002	drought	was	part	of	a	 long-
term	drought	in	the	western	United	States	that	had	persisted	since	about	1999	but	
reached	its	peak	areal	extent	during	the	summer	of	2002,	covering	about	45%	of	the	
country,	as	indicated	in	the	top	time	series	graph	in	Figure	10.3.	This	is	especially	
apparent	for	the	Colorado	Basin	(CBRFC),	where	drought	conditions	covered	more	
than	90%	of	the	region,	as	defined	by	modeled	soil	moisture	results	in	Figure	10.4.	
This	drought	was	driven	by	near	record	low	precipitation	(Lawrimore	and	Stephens,	
2003)	and	caused	severe	water	resources	impacts,	with	record	low	levels	in	the	Lake	
Powell	reservoir,	increased	wildfire	hazards,	and	tree	die-off	directly	attributed	to	
drought	 and	 an	 associated	 insect	 outbreak	 (Betancourt,	 2003).	 The	 more	 recent	
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FIGURE  10.2  Map	 of	 the	 12	 continental	 U.S.	 RFC	 regions:	 Northwest	 (NW),	 Missouri	
Basin	(MB),	North	Central	(NC),	Ohio	Basin	(OH),	Northeast	(NE),	Middle	Atlantic	(MA),	
California–Nevada	(CN),	Colorado	Basin	(CB),	Arkansas-Red	Basin	(AB),	West	Gulf	(WG),	
Lower	Mississippi	(LM),	and	Southeast	(SE).
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FIGURE 10.3  A	30	year	time	series	(1979–2008)	of	the	percentage	of	the	total	area	of	the	
continental	United	States	and	individual	NWS	RFC	regions	detected	to	be	in	drought	from	the	
soil	moisture	percentile	information	(drought	defined	as	percentile	<20%)	for	the	multi-model	
mean	 (calculated	 from	 the	 four	 NLDAS-2	 LSMs).	 The	 gray	 shading	 represents	 the	 range	
across	the	models.	The	regions	are	ordered	from	west	(upper	panels)	to	east	(lower	panels).
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FIGURE 10.4  (See color insert.)	Snapshots	of	four	major	drought	events	from	June	soil	moisture	percentiles	from	the	MME	and	the	four	models.	
Columns	are	(1)	1988,	(2)	1996,	(3)	2002,	and	(4)	2007.
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2007	drought	in	the	southeast	United	States	reduced	reservoir	levels	to	record	lows,	
affecting	water	supplies	to	the	city	of	Atlanta	and	exacerbating	interstate	conflicts	on	
water	allocations.	The	model	results	in	Figure	10.4	indicate	that	this	drought	covered	
the	southern	states	to	the	east	of	the	Mississippi	River,	while	drought	also	affected	
California	and	other	western	states.

The	four	models	produced	remarkably	consistent	depictions	of	 the	peak	extent	
of	these	large-scale	drought	events,	indicating	that	their	rank	correlations	are	high.	
They	also	agree	well	on	the	location	and	magnitude	of	wet	regions.	Some	level	of	
agreement	is	to	be	expected	among	the	models	given	the	commonality	in	the	meteo-
rological	forcings	and	underlying	land	surface	characteristics,	as	well	as	the	use	of	
percentiles	 for	quantifying	drought	 severity.	Nevertheless,	 the	 level	of	 intermodel	
consistency	 is	encouraging,	and	 the	classified	drought	patterns	appear	 to	coincide	
with	the	known	extents	and	impacts	of	these	major	events	as	discussed	earlier.

However,	as	we	look	at	local	scales	and	the	overall	statistics	of	soil	moisture	defi-
cits,	the	differences	between	the	models	become	more	apparent.	Figure	10.5	shows	
the	statistics	of	the	duration	and	frequency	of	soil	moisture	deficits	on	a	grid	cell	basis	
for	the	four	models.	As	before,	deficits	are	defined	as	soil	moisture	below	the	20th	
percentile	lasting	for	one	or	more	months	and	are	referred	to	as	a	run	(Yevjevich,	
1972).	This	is	a	somewhat	loose	definition	of	drought,	but	it	reveals	the	differences	
in	the	timescales	of	soil	moisture	variation	between	the	models.	The	SAC	model	has	
the	highest	number	of	deficits	of	any	duration;	this	in	part	is	driven	by	the	higher	
frequency	of	short-term	runs	(1–3	months)	and	lower	frequency	of	long-term	runs	
(>12	months),	and	is	reflected	by	the	lower	mean	duration.	In	contrast,	the	Mosaic	
model	has	the	lowest	total	number	of	runs,	lowest	number	of	short-term	runs,	and	
highest	number	of	long-term	runs.	The	VIC	and	Noah	models	have	similar	statis-
tics,	although	the	Noah	tends	to	have	longer	duration	runs	and	a	sharper	delineation	
between	 regions,	 with	 high	 short-term	 frequencies	 in	 the	 east	 and	 northwest	 and	
high	long-term	(>12	months)	frequencies	in	the	west.	These	differences	are	related	
to	the	variability	of	soil	moisture	in	each	of	the	models,	which	can	vary	considerably	
(Schaake	et	al.,	2004)	across	models	and	climate	regimes	because	of	differences	in	
model	parameterizations	of	soil	water	movement	and	the	relationships	to	soil	water	
drainage	and	infiltration.	Although	the	models	agree	well	at	large	scales,	there	are	
significant	differences	 at	 the	 shorter	 time	 steps	 and	 in	 the	 local-scale	 spatial	 pat-
terns,	which	affect	how	the	depicted	drought	develops,	persists,	and	recovers,	with	
ramifications	for	regional-	and	local-scale	monitoring.	This	highlights	the	value	of	
an	MME	for	reducing	the	impacts	of	model-specific	parameterizations.

10.4   NLDAS DROUGHT APPLICATIONS 
AND OPERATIONAL ASPECTS

One	 rationale	 for	 running	 NLDAS-2	 is	 to	 support	 operational	 drought	 monitor-
ing	 and	 seasonal	 drought	 forecasting.	 To	 this	 end,	 the	 NLDAS	 is	 now	 produc-
ing	 real-time	 information	 and	 future	 predictions	 of	 the	 hydrologic	 cycle	 across	
the	 United	 States,	 including	 drought	 monitoring	 products	 and	 seasonal	 drought	
forecasts.	 The	 NLDAS-2	 drought	 monitor	 provides	 daily	 updates	 at	 1–2	 days	
behind	 real	 time,	 and	 the	 seasonal	 forecast	 system	 makes	 predictions	 every	
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FIGURE 10.5  (See color insert.)	Statistics	of	drought	duration	and	frequency	for	the	four	LSMs	for	1979–2008	calculated	from	monthly	soil	mois-
ture	percentiles.	A	drought	is	defined	at	each	grid	cell	when	the	soil	moisture	percentile	drops	below	20%.	(a)	Total	number	of	droughts,	(b)	number	of	
short-term	(1–3	month	duration)	droughts,	(c)	number	of	medium-term	(7–12	month	duration)	droughts,	(d)	number	of	long-term	(>12	month	duration)	
droughts,	and	(e)	the	mean	drought	duration.
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month	out	 to	9	months	 into	 the	future.	These	products	are	provided	 to	 the	com-
munity	 at	 http://www.emc.ncep.noaa.gov/mmb/nldas/.	 The	 near-real-time	 forcing	
data	and	output	from	the	models	are	available	in	hourly	time	step	in	binary	com-
pressed	 GRIB2	 format	 files	 and	 can	 be	 accessed	 from	 the	 NCEP	 EMC	 via	 ftp	
(ftp://hydro1.sci.gsfc.nasa.gov/data/s4pa/NLDAS)	and	from	the	GES	DISC	GrADS	
Data	Server	(http://hydro1.gsfc.nasa.gov/dods/).

10.4.1  NLDAS reAL-tiMe DrOught MONitOriNg

The	NLDAS	experimental	drought	monitor	 is	based	on	near-real-time	output	of	
soil	moisture	and	other	hydrologic	variables	from	the	four	LSMs,	thus	providing	
an	 MME	 estimate	 of	 current	 drought	 conditions	 across	 the	 United	 States.	 The	
anomalies	and	percentiles	are	based	on	a	28	year	climatology	(1980–2007).	Two	
separate	climatology	files	are	used,	one	for	the	calculation	of	anomalies	and	the	
other	 for	 the	calculation	of	percentiles.	Anomalies	are	calculated	by	comparing	
the	current	soil	moisture	values	to	mean	values	for	the	same	time	of	year	over	each	
grid	cell.	Percentiles	are	based	on	a	5	day	moving	window	of	soil	moisture	values.	
This	acts	to	smooth	out	the	soil	moisture	record	and	removes	any	high	frequency	
variations	(or	noise)	in	the	data.	Weekly	analyses	for	each	grid	cell	are	computed	
by	comparing	 the	past	7	days	 to	 the	 corresponding	period	 in	 the	percentile	 cli-
matology.	Taking	day	1	of	 the	week	as	an	example,	hourly	soil	moisture	values	
from	this	day	are	averaged	together	to	form	a	single	daily	value.	This	value	is	then	
ranked	against	the	soil	moisture	values	from	each	day	of	the	5	day	window	sur-
rounding	day	1	of	the	corresponding	week	in	the	percentile	climatology.	This	same	
process	is	then	repeated	for	days	2–7	of	the	week,	with	each	day	of	the	week	con-
tributing	equally	to	the	overall	ranking	value.	Monthly	(30	day)	percentile	analyses	
are	computed	in	a	similar	fashion.	Figure	10.6	shows	an	example	of	the	real-time	
monitor	for	the	MME	from	December	2010	for	precipitation,	evapotranspiration,	
runoff,	streamflow,	soil	moisture,	and	snow	water	equivalent.	Comparison	of	the	
anomalies	shows	drier	than	normal	conditions	in	the	Gulf	Coast	states,	with	par-
ticularly	dry	conditions	in	east	Texas	and	Louisiana,	yet	there	are	striking	differ-
ences	between	the	different	hydrologic	components,	highlighting	the	differences	
in	 how	 anomalies	 propagate	 through	 the	 system.	 Collectively,	 these	 differences	
would	 be	 expected,	 given	 that	 different	 components	 of	 the	 hydrologic	 system	
respond	at	 varying	 temporal	 intervals	 to	moisture	deficits	 ranging	 from	days	 to	
weeks	for	precipitation,	ET,	and	soil	moisture	to	weeks	to	months	for	streamflow.	
As	a	result,	each	of	these	NLDAS-2	products	has	the	potential	to	provide	useful	
information	about	specific	hydrologic	components	that	could	enhance	hydrological	
drought	monitoring.

10.4.2  NLDAS SeASONAL fOrecAStiNg

The	experimental	seasonal	hydrologic	forecast	systems	of	Luo	and	Wood	(2008)	
and	Wood	and	Lettenmaier	(2006)	have	been	combined	and	applied	to	the	NLDAS	
suite	 of	 models	 and	 data	 products	 to	 form	 the	 NLDAS-2	 seasonal	 hydrologic	
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FIGURE  10.6  (See color insert.)	 Example	 of	 output	 fields	 from	 the	 NLDAS-2	 drought	
monitor	 (http://www.emc.ncep.noaa.gov/mmb/nldas/drought/),	 showing	 anomaly	 data	 for	
the	week	ending	on	December	16,	2010,	 for	 (a)	precipitation	and	multi-model	averages	of	
(b)	evapotranspiration,
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forecast	system.	Currently,	only	the	VIC	model	is	used	in	the	experimental	fore-
cast,	with	plans	to	incorporate	the	other	models	in	the	future.	Forecasts	are	pro-
duced	monthly	at	 the	beginning	of	each	month	using	the	initial	condition	that	 is	
closest	to	the	first	day	of	the	month.	Three	forecast	approaches	are	implemented	
that	 depend	 on	 the	 source	 of	 the	 climate	 forecast	 data	 from	 either	 statistical	 or	
dynamical	forecasts.	The	climate	data	are	then	downscaled	to	1/8th	degree,	bias	
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FIGURE  10.6  (continued)  (See color insert.) (e)	 soil	 moisture,	 and	 (f)	 snow	 water	
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corrected,	and	used	to	drive	the	VIC	model	 to	produce	predictions	of	hydrology	
and	drought	conditions.	The	three	forecast	approaches	are

	 1.	The	CFS-based	forecast	(Saha	et	al.,	2006)	uses	seasonal	forecasts	from	the	
NCEP	CFS	dynamical	model.	The	set	of	CFS	forecasts	from	the	previous	
month	are	combined	to	form	the	model	forecast	distribution,	which	is	then	
merged	with	historic	observations	using	a	Bayesian	approach	developed	by	
Luo	et	al.	(2003)	and	Luo	and	Wood	(2008).

	 2.	The	CPC	outlook–based	forecast	(http://www.cpc.ncep.noaa.gov/products/
forecasts/)	is	based	on	expert	merging	of	statistical	and	dynamical	(includ-
ing	CFS)	 forecasts	 and	 is	generally	 comparable	 in	 skill	 to	 the	CFS-only	
forecasts.	It	uses	the	seasonal	outlook	of	probability	of	exceedance	(POE)	
released	by	the	NCEP	CPC	during	the	previous	month	as	the	forecast	dis-
tribution	for	each	of	the	102	U.S.	climate	divisions.	These	distributions	are	
applied	to	all	NLDAS	grid	boxes	within	the	climate	division.

	 3.	The	Extended	Streamflow	Prediction	(ESP)	(Day,	1985)	method	is	based	on	
resampling	of	the	historic	record,	and	therefore,	its	skill	will	generally	not	
exceed	that	of	the	other	two	methods.	The	ESP	method	uses	20	randomly	
selected	historical	atmospheric	forcing	time	series	as	possible	realizations	
of	future	conditions.	To	be	comparable	and	practical,	both	CFS	and	CPC	
outlook–based	approaches	also	generate	20	ensemble	members.

Figure	10.7	shows	forecasts	made	in	March	2010	using	the	three	methods.	Each	column	
is	the	6	month	forecast	from	one	forecast	approach,	and	each	row	is	the	specific	forecast	
for	each	individual	month,	showing	the	probability	of	drought	persisting	at	lead	times	
of	1–6	months,	where	drought	is	defined	by	monthly	average	soil	moisture	percentiles	
and	a	20th	percentile	threshold.	Given	that	the	NLDAS-2	seasonal	forecast	system	is	an	
ensemble	forecast	system,	the	drought	forecast	includes	a	forecast	anomaly,	forecast	
percentile,	and	forecast	probability	analysis.	The	anomaly	and	percentile	of	the	ensem-
ble	mean	or	median	are	used	as	a	single-valued	deterministic	forecast.	When	interpret-
ing	the	ensemble	forecast	in	a	probabilistic	fashion,	the	probability	of	drought	(when	
soil	moisture	is	below	20th	percentile)	is	derived	from	the	ensemble.	More	details	of	the	
system	and	development	history	can	be	found	on	the	Princeton	Seasonal	Hydrological	
Forecast	System	website	(http://hydrology.princeton.edu/forecast).

The	 drought	 forecast	 system	 has	 been	 evaluated	 with	 respect	 to	 hindcasts	 of	
the	1988	drought	and	also	tested	in	real	time	for	the	2007	drought	in	the	southeast	
United	States.	Figure	10.8	shows	the	drought	forecast	made	on	January	1,	2007,	for	
the	subsequent	3	months	compared	to	the	drought	conditions	estimated	later	from	
the	observation-forced	monitoring	 that	 represents	our	best	estimate	of	 true	condi-
tions.	In	this	case,	the	system	was	able	to	forecast	the	development	of	drought	con-
ditions	in	California	(with	low	uncertainty	as	represented	by	the	ensemble	spread)	
and	in	the	southeast	(with	larger	uncertainty	in	the	magnitude	and	location	of	the	
drought	center)	up	to	3	months	in	advance.	In	general,	the	system	has	demonstrated	
significant	skill	in	the	first	2	months	of	a	forecast	and	shows	marginal	skill	out	to	4–6	
months	(Luo	and	Wood,	2008).
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10.5   INTEGRATION OF NEW REMOTE SENSING DATA 
INTO NLDAS DROUGHT PRODUCTS

The	NLDAS	 framework	provides	a	mature	platform	 for	producing	 real-time	fields	
of	hydrologic	variables	in	support	of	drought	monitoring	and	as	initial	conditions	for	
seasonal	drought	forecasting.	These	products	have	been	evaluated	through	a	series	of	
studies	that	began	with	NLDAS-1	(e.g.,	Sheffield	et	al.,	2003;	Lohmann	et	al.,	2004;	
Schaake	et	al.,	2004)	through	more	recent	studies	within	NLDAS-2	(e.g.,	Xia	et	al.,	2012)	
as	presented	in	Section	10.3,	which	show	that	consistent	depictions	of	large-scale	his-
toric	drought	events	were	characterized	within	this	system.	Nevertheless,	a number	
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FIGURE 10.7  (See color insert.)	Example	of	seasonal	forecasts	for	May	through	September	
2010,	showing	the	likelihood	of	drought	developing	or	persisting	at	lead	times	of	1–6	months.	
A	drought	is	defined	as	soil	moisture	deficits	below	the	20th	percentile,	and	the	likelihood	
is	based	on	ensemble	forecast	distributions.	Forecasts	are	based	on	three	methods:	(1)	CFS,	
(2)	CPC	official	outlooks,	and	(3)	ESP.
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of	challenges	remain,	and	improvements	can	be	made,	including	understanding	the	
differences	 in	 how	 each	 model	 represents	 the	 dynamics	 of	 drought	 development	
(as motivated	by	the	large	differences	in	drought	statistics	shown	in	Section	10.3)	and	
improving	the	accuracy	of	the	monitoring,	especially	in	regions	with	few	meteorologi-
cal	ground	stations.	The	use	of	satellite-based	remote	sensing	data	can	greatly	benefit	
monitoring	over	areas	with	a	sparse	gauge	network	and	at	high	elevations	where	there	
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FIGURE 10.8  (See color insert.)	Example	of	seasonal	prediction	of	the	2007	U.S.	drought	
(figure	 reproduced	 from	 Luo	 L.	 and	 E.F.	 Wood,	 Geophys. Res. Lett.,	 34,	 L22702,	 2007).	
Predictions	of	soil	moisture	percentiles	(%)	(left	column)	were	made	starting	on	January	1,	
2007,	using	downscaled	and	bias-corrected	CFS	seasonal	climate	forecasts	to	drive	the	VIC	
model,	and	are	compared	to	estimated	soil	moisture	from	the	real-time	drought	monitoring	
(right	column).	Left	column	shows	the	mean	of	the	most	likely	ensemble	set	(shaded)	and	their	
spread	(contour).	The	boxes	indicate	regions	where	drought	was	most	severe	during	early	2007.
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is	high	spatial	variability	in	meteorological	conditions.	Remotely	sensed	observations	
provide	exceptional	spatial	coverage	at	a	relatively	high	temporal	sampling	interval	
over	 large	 areas	 where	 quality	 in	 situ	 data	 are	 limited.	 Currently,	 NLDAS-2	 uses	
GOES-based	downward	solar	radiation	as	a	forcing	and	AVHRR	data	to	parameterize	
the	spatial	and	seasonal	variation	in	vegetation.	In	this	section,	we	explore	the	poten-
tial	 for	 integrating	new	sources	of	remote	sensing	data,	specifically	using	remotely	
sensed	data	to	estimate	soil	moisture,	groundwater,	and	precipitation,	which	can	be	
used	to	enhance	NLDAS	drought	monitoring	and	prediction	across	the	United	States.

10.5.1  MicrOwAve SOiL MOiSture retrievALS

Much	progress	has	been	made	in	recent	years	in	retrieving	terrestrial	water	cycle	vari-
ables	from	space	(Tang	et	al.,	2009),	and	it	is	now	possible	to	monitor	all	components,	
albeit	with	uncertainty	and	nonclosure	of	the	water	budget	(Sheffield	et	al.,	2009b).	
Nevertheless,	it	is	possible	to	use	these	products	to	detect	changes	in	moisture	avail-
ability	and	the	presence	of	drought.	For	soil	moisture,	long-term	(decadal)	products	
that	merge	 information	across	 satellites	 and	 sensors	 are	being	produced	 (e.g.,	Owe	
et	al.,	2008)	and	real-time	products	are	available	(e.g.,	Njoku	et	al.,	2003).	Remotely	
sensed	soil	moisture	can	be	used	in	a	number	of	different	ways	to	improve	drought	
monitoring:	as	a	direct	complement	to	in	situ	observations	and	modeled	data,	as	well	
as	through	assimilation	into	LSMs.	This	can	help	in	regions	where	gauges	are	sparse	
or	where	 radar	 incorrectly	 identifies	precipitation	because	of	evaporation	or	advec-
tion	before	it	hits	the	ground	(McCabe	et	al.,	2008).	However,	several	challenges	in	
using	remotely	sensed	soil	moisture	data	limit	their	use	and	dictate	how	they	should	be	
employed.	For	example,	microwave	soil	moisture	retrievals	directly	sample	soil	mois-
ture	conditions	only	in	the	top	few	cm	of	the	soil	profile	and	can	be	obtained	only	at	
relatively	coarse	spatial	resolution	(25–40	km)	under	relatively	sparse	vegetation	cover.

Soil	moisture	can	be	retrieved	at	large	scale	(but	coarse	resolution)	using	satel-
lite-borne	passive	and	active	microwave	sensors.	Various	emission	sources	combine	
to	provide	 the	microwave	brightness	 temperature	 (BT)	 that	 the	 satellite	observes.	
Radiation	is	received	from	the	atmosphere,	vegetation,	and	the	top	layer	of	the	soil,	
which	is	dependent	on	the	moisture	content	via	the	sensitivity	of	the	soil	emissivity.	
Although	BT	is	sensitive	to	soil	moisture,	these	other	sources	of	emissions	must	be	
taken	into	account.	These	sources	can	be	modeled	using	a	radiative	transfer	model,	
and	a	soil	moisture	value	can	be	inferred	with	a	1	K	change	in	BT	roughly	equivalent	
to	a	2%	change	 in	 soil	moisture,	depending	on	 the	microwave	 frequency.	Several	
	satellite-based	microwave	sensors	have	been	used	for	retrieving	soil	moisture,	includ-
ing	the	Tropical	Rainfall	Measurement	Mission	(TRMM)	Microwave	Imager	(TMI)	
on	 the	 NASA	 TRMM	 satellite,	 which	 was	 launched	 in	 1997,	 and	 the	 Advanced	
Microwave	Scanning	Radiometer	on	the	Earth	Observing	System	(AMSR-E)	aboard	
the	NASA	Aqua	satellite	that	was	launched	in	2002.	The	biggest	drawback	of	these	
current	active	radiometers	is	the	emission	depth	of	the	microwave	signal,	which	is	
dependent	on	the	wavelength	and	is	generally	restricted	to	the	top	centimeter	of	soil.	
For	drought	applications,	the	primary	interest	is	the	integrated	soil	moisture	over	a	
greater	depth	(ideally	 the	root	zone)	 than	 the	 top	centimeter.	Soil	moisture	varies	
greatly	vertically,	and	as	a	result,	soil	moisture	conditions	at	a	shallow	soil	depth	may	
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bear	little	resemblance	to	conditions	in	the	total	soil	column.	It	is	challenging	to	use	
soil	moisture	 information	estimated	from	these	satellite-based	systems	 to	 identify	
drought	and	 to	compare	with	data	 from	(or	when	assimilating	 into)	LSMs,	which	
typically	have	top	soil	layers	on	the	order	of	5–10	cm	or	more.

In	densely	vegetated	regions,	the	microwave	signal	from	the	underlying	soil	is	attenu-
ated,	and	the	vegetation	itself	emits	a	signal,	complicating	the	estimation	of	soil	moisture	
from	the	satellite	measurements.	This	generally	results	in	retrievals	being	restricted	to	
sparsely	vegetated	regions	characterized	by	low	vegetation	biomass	and	water	content.	
Current	passive	microwave	sensors	are	generally	in	the	C-band	(4–8	GHz)	(AMSR-E	
at	6.9	GHz)	or	X-band	(8–12	GHz)	range	(TMI	and	AMSR-E	at	10.7	GHz),	although	
L-band	(1–2	GHz)	is	much	better	in	terms	of	lower	attenuation	through	vegetation	and	a	
deeper	effective	soil	emission	depth.	Figure	10.9	shows	the	regions	of	microwave-based	
soil	 moisture	 retrievability	 across	 the	 United	 States	 based	 on	 estimated	 vegetation	
water	content	for	X-	and	L-band	microwave	radiometers.	The	upper	limit	for	X-band	
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FIGURE  10.9  (See color insert.)	 Zones	 of	 applicability	 for	 microwave	 remote	 sensing	
retrievals	of	soil	moisture	based	on	penetration	through	vegetation	for	frequencies	in	(a)	X-band	
(10.7	GHz)	and	(b)	L-band	(1.4	GHz).	Vegetation	is	characterized	by	its	vegetation	water	con-
tent	(kg	m−2).	Gray	shading	indicates	areas	where	retrievals	of	soil	moisture	are	not	feasible.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11863-14&iName=master.img-015.jpg&w=240&h=115
http://www.crcnetbase.com/action/showImage?doi=10.1201/b11863-14&iName=master.img-016.jpg&w=240&h=115
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(10.7	GHz)	retrievals	is	1.5–2	kg/m2	(Njoku	et	al.,	2003;	Narayan	et	al.,	2004)	and	for	
L-band	(1.4	GHz)	retrievals	is	4–5	kg/m2	(Kerr,	2007).	As	a	reference,	short	grass	is	less	
than	1	kg/m2;	corn	and	soybeans	can	be	up	to	6	and	1–3	kg/m2,	respectively.	There	is	a	
clear	delineation	in	the	middle	of	the	United	States	in	the	zones	of	feasible	soil	moisture	
retrievals	at	10.7	GHz	(Figure	10.9a).	For	an	L-band	instrument,	the	extent	of	feasible	
zones	expands	as	signals	can	penetrate	higher	vegetation	water	contents	(Figure	10.9b).	
Despite	 this	expanded	geographic	coverage,	 retrievals	are	still	not	possible	 in	many	
areas,	particularly	in	the	densely	vegetated	eastern	United	States.

The	spatial	resolution	of	satellite-based	microwave	data,	generally	on	the	order	
of	 40	km,	 is	 also	 a	 limiting	 factor	 even	 though	 data	 products	 are	 often	 provided	
at	a	higher	25	km	spatial	 resolution	because	of	oversampling.	Because	of	 the	high	
spatial	variability	of	soil	moisture	at	a	local	scale,	interpretation	of	25–40	km	data	
can	be	problematic.	Landscapes	can	comprise	many	different	land	covers,	often	in	
complex	spatial	patterns,	which	results	in	the	integration	of	emissions	from	multiple	
land	cover	 surfaces	at	 the	coarse	pixel	 level	 that	may	be	contaminated	by	signals	
from	water	bodies	and/or	dense	vegetation,	resulting	in	unrepresentative	soil	mois-
ture	estimates.	The	presence	of	water	bodies	or	dense	vegetation	will	 tend	to	give	
overestimates	of	soil	moisture.	This	has	obvious	consequences	when	comparing	to	a	
point-based	observation	from	a	soil	moisture	probe	or	trying	to	infer	soil	moisture	at	
subpixel	scales.	Other	factors	that	hinder	the	retrievals	include	the	presence	of	active	
precipitation,	snow,	and	frozen	soils.	Current	research	is	looking	to	combine	products	
from	multiple	microwave	satellite	sensors	to	improve	spatial	and	temporal	coverage	
and	resolution,	 including	combining	passive	and	active	products	 (Das	et	al.,	2011;	
Liu	et	al.,	2011).	However,	these	are	generally	still	restricted	to	higher	frequencies	in	
the	X-band	because	the	C-band	suffers	from	radio	frequency	interference	(RFI)	and	
cannot	retrieve	soil	moisture	over	dense	vegetation.	The	recently	launched	European	
Space	Agency	(ESA)	Soil	Moisture	Ocean	Salinity	(SMOS)	mission	and	the	future	
planned	NASA	Soil	Moisture	Active	and	Passive	(SMAP)	mission	will	carry	L-band	
instruments,	which	will	increase	temporal	sampling	and	improve	the	effective	emis-
sion	depth	to	about	five	times	deeper	into	the	soil	than	the	current	TMI	and	AMSR-E	
X-band	 radiometers,	 which	 should	 provide	 better	 soil	 moisture	 estimates	 that	 are	
representative	of	deeper	soil	moisture	conditions	(Entekhabi	et	al.,	2008).

Although	there	are	challenges	in	determining	where	soil	moisture	can	be	retrieved	
from	 satellite-based	 microwave	 observations	 and	 how	 to	 interpret	 the	 values,	 the	
potential	 exists	 to	use	 these	data	within	 a	drought	monitoring	 framework	 such	as	
NLDAS-2.	Figure	10.10	compares	soil	moisture	retrievals	 from	AMSR-E	over	 the	
United	 States	 from	 2002	 to	 2008	 with	 NLDAS-2	 model	 output.	 The	 retrieval	 is	
derived	from	AMSR-E	BTs	using	the	Princeton	Land	Surface	Microwave	Emission	
Model	(LSMEM;	Drusch	et	al.,	2004).	The	model	uses	surface	properties	such	as	
vegetation	water	content	and	soil	texture	and	also	the	land	surface	states	of	tempera-
ture	and	soil	moisture	to	estimate	the	top	of	atmosphere	(TOA)	BT	that	the	satellite	
sensor	would	record.	To	estimate	soil	moisture	from	an	actual	satellite-observed	BT,	
the	model	is	run	in	“forward”	mode	by	iterating	over	soil	moisture	values	until	the	
modeled	BT	matches	the	satellite	observation.	Figure	10.10a	shows	the	range	in	soil	
moisture	for	all	months	over	the	full	7-year	period	and	indicates	that	the	largest	sen-
sitivity	of	the	soil	moisture	retrievals	is	in	the	central	United	States.	This	sensitivity	
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is	derived	from	a	combination	of	the	sensitivity	of	the	AMSR-E	sensor,	the	LSMEM	
retrieval	model,	and	 the	climate	 forcing	variability.	The	rest	of	Figure	10.10	com-
pares	the	AMSR-E-based	soil	moisture	data	for	October	2007	with	data	from	the	four	
NLDAS-2	models	taken	from	their	top	soil	layer	output.	Since	the	AMSR-E	retrievals	
and	the	modeled	data	could	not	be	compared	directly	because	they	represent	differ-
ent	soil	layer	thicknesses,	they	were	normalized	through	the	conversion	to	monthly	
percentiles	based	on	the	data	from	2002	to	2008.	To	increase	the	sample	size	for	cal-
culating	the	percentiles,	data	from	eight	neighboring	pixels	are	included,	thus	trading	
space	for	time.	In	this	example,	the	AMSR-E	data	show	remarkable	similarity	to	the	
wet	and	dry	regions	depicted	by	the	models.	The	largest	differences	are	in	regions	of	
denser	vegetation	in	the	east,	where	the	retrievals	are	expected	to	be	less	accurate,	
and	the	mountainous	areas	of	the	southwest,	where	terrain	will	affect	the	retrievals.

Time	 series	 (Figure	 10.11)	 and	 correlation	 maps	 (Figure	 10.12)	 between	 the	
retrievals	and	 the	models	 indicate	consistency	 in	 the	southwest	United	States	and	
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FIGURE  10.10  (See color insert.)	 (a)	 Dynamic	 range	 (%	 vol.)	 of	 AMSR-E	 daily	 soil	
moisture	 and	 (b–f)	 examples	 of	 monthly	 soil	 moisture	 percentiles	 for	 October	 2007	 for	
(b) AMSR-E,	(c)	Noah,	(d)	Mosaic,	(e)	SAC,	and	(f)	VIC.
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FIGURE 10.11  Time	series	of	monthly	soil	moisture	percentiles	from	AMSR-E	and	three	
NLDAS-2	LSMs	(Noah,	Mosaic,	and	SAC)	for	(a)	the	conterminous	United	States,	(b)	Northern	
Plains	(40°–49°N,	95°–105°W),	(c)	Four	Corners	region	(33°–40°N,	105°–115°W),	and
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central	 Great	 Plains	 in	 line	 with	 the	 regions	 of	 retrievability	 presented	 in	 Figure	
10.9.	The	correlation	with	Mosaic	in	the	east	is	particularly	strong	despite	the	dense	
vegetation	cover,	which	may	be	related	to	a	decreasing	trend	in	the	AMSR-E	and	
Mosaic	data	 that	may	be	 an	 artifact	 of	 the	 short	 time	period	 (2002–2008)	of	 the	
comparison,	rather	than	any	physical	connection.	The	Mosaic	model	also	possesses	
a	 faster	hydrologic	cycle	relative	 to	 the	other	models,	 instilling	a	more	rapid	con-
nection	between	soil	moisture	and	surface	evaporation.	Figure	10.11	shows	reason-
able	agreement	among	the	time	series	at	regional	and	even	national	scales,	although	
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FIGURE 10.11 (continued)  (d)	Southern	Plains/Texas	(25°–37°N,	95°–105°W).

−0.5−0.4−0.3−0.2−0.1 0.0 0.1 0.2 0.3 0.4 0.5

Correlation

−0.5−0.4−0.3−0.2−0.1 0.0 0.1 0.2 0.3 0.4 0.5

Correlation

−0.5−0.4−0.3−0.2−0.1 0.0 0.1 0.2 0.3 0.4 0.5

Correlation

−0.5−0.4−0.3−0.2−0.1 0.0 0.1 0.2 0.3 0.4 0.5

Correlation

Correlation AMSR−E and Noah Correlation AMSR−E and Mosaic

Correlation AMSR−E and SAC Correlation AMSR−E and VIC

FIGURE  10.12  (See color insert.)	 Correlation	 between	 monthly	 AMSR-E	 and	 LSM	
monthly	soil	moisture	percentiles	for	2002–2008.
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there	are	some	inconsistencies.	For	example,	 there	are	considerable	differences	 in	
2005–2006	for	the	United	States	and	the	four	corners	regions	and	in	2006–2007	in	
the	southern	Plains–Texas	region.	For	the	latter,	the	differences	may	be	related	to	the	
severe	drought	 in	2006	and	subsequent	flooding	conditions	in	2007.	In	periods	of	
extreme	dry	or	wet	conditions,	the	differences	in	the	ASMR-E	and	model	soil	mois-
ture	estimates	might	be	magnified.	For	example,	the	AMSR-E	retrievals	represent	
the	top	1	cm	of	the	soil,	which	will	tend	to	become	wet	and	dry	more	quickly	than	the	
underlying	deeper	(10	cm)	layer	represented	by	the	models.	In	a	wet	period,	standing	
water	may	contaminate	the	AMSR-E	retrievals.	Overall,	however,	there	appears	to	
be	useful	information	in	the	retrieved	values	that	reflects	variation	in	wet	and	dry	
spells	and	may	help	improve	model-based	drought	monitoring,	especially	in	regions	
of	sparse	observational	networks.

10.5.2  SyNergy with Other reMOte SeNSiNg SigNALS Of DrOught

This	 book	 describes	 several	 newly	 developed	 remotely	 sensed	 drought	 products,	
many	of	which	can	be	 integrated	 into	 the	NLDAS-2	either	as	 improved	 inputs	or	
assimilated	 signals	 of	 surface	 and	 subsurface	 moisture.	 In	 general,	 each	 of	 the	
drought	 products	 represents	 a	 different	 aspect	 of	 the	 hydrologic	 cycle	 or	 state	 of	
vegetation.	In	some	cases	(e.g.,	soil	moisture	and	total	water	storage),	they	represent	
similar	or	overlapping	quantities	but	provide	complementary	information	that	draws	
from	 the	 strengths	of	 the	 individual	 sensor,	 retrieval	 algorithm,	or	 characteristics	
of	the	retrieval.	When	combined,	these	mostly	independent	products	can	provide	a	
more	holistic	view	of	drought	and	the	hydrologic	cycle	in	general,	as	well	as	allowing	
quantification	of	dependencies	and	feedbacks	between	components	such	as	tracking	
the	propagation	of	drought	through	the	hydrologic	and	ecological	systems.

A	challenge	for	the	scientific	and	user	community	is	to	determine	the	consistency	
among	 these	 different	 products	 and	 how	 they	 may	 be	 combined	 in	 useful	 ways	 to	
improve	drought	assessment.	A	flexible	modeling	system	such	as	the	NLDAS	has	the	
potential	to	provide	the	framework	for	merging	these	various	products	into	a	consistent,	
continuous	in	space	and	time,	and	robust	picture	of	drought,	by	providing	the	hooks	to	
tie	the	individual	pieces	together.	From	the	perspective	of	the	modeling,	this	can	also	
be	viewed	as	the	use	of	remote	sensing	products	to	correct	the	errors	in	the	models	and	
their	input	data.	Much	work	has	already	been	carried	out	to	merge	remote	sensing	prod-
ucts	with	terrestrial	modeling,	some	of	which	is	discussed	in	this	book	(Chapters	7	and	
11)	in	the	context	of	drought.	The	rest	of	this	section	describes	the	potential	to	leverage	
from	these	activities	to	merge	remote	sensing	and	modeling	within	the	NLDAS.

High-quality	 and	 high-resolution	 precipitation	 data	 are	 crucial	 for	 depicting	
the	development	 and	 recovery	of	drought.	Better	 estimates	of	precipitation	 in	 the	
NLDAS	 are	 likely	 to	 lead	 to	 better	 representation	 of	 land	 surface	 hydrology	 and	
drought,	but	this	is	dependent	on	the	region	and	application.	Over	the	United	States,	
the	density	of	ground	observations	of	precipitation	and	other	meteorological	data	
is	 relatively	high	as	compared	 to	 locations	 such	as	central	Africa.	However,	 even	
in	the	United	States,	gauge	density	is	often	not	optimal	for	representing	the	spatial	
and	temporal	variability	of	precipitation	and	soil	moisture.	The	problem	of	sparse	
gauge	coverage	is	somewhat	overcome	in	the	NLDAS	through	the	merging	of	gauge	
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data	with	ground	radar	data.	Nevertheless,	radar	coverage	is	not	complete	spatially	
and	is	prone	to	error	for	a	number	of	reasons,	including	bright-band,	elevation,	and	
range	effects	that	lead	to	a	complex	nonlinear	relationship	between	radar	reflectiv-
ity	and	rainfall	rate	at	the	surface	(Krajewski	and	Smith,	2002).	There	is,	therefore,	
potential	 for	 utilizing	 remote	 sensing–based	 estimates	 of	 precipitation	 to	 provide	
high-resolution	complementary	information	to	existing	products	used	as	input	to	the	
NLDAS	(Chapters	12–15).	In	some	regions,	this	is	likely	the	best	and	sometimes	the	
only	 source	of	precipitation	 information,	 and	 its	 potential	 has	been	demonstrated	
in	several	 regional	applications	such	as	FEWS	NET	(Verdin	et	al.,	2005)	and	 the	
Princeton	African	Drought	Monitor	(Sheffield	et	al.,	2008c).

In	this	chapter	and	Chapter	9,	the	potential	of	remotely	sensed	soil	moisture	as	a	
drought	assessment	tool	has	been	presented.	There	is	further	opportunity	to	exploit	
and	extend	this	capability	through	assimilation	into	the	NLDAS	or	similar	land	sur-
face	modeling	system	to	provide	a	more	complete	view	of	drought	and	correct	for	
model	 structural	 and	 input	 errors.	 Assimilation	 of	 remotely	 sensed	 soil	 moisture	
information	from	passive/active	microwave	into	LSMs	has	been	demonstrated	previ-
ously	(Houser	et	al.,	1998;	Crow	and	Wood,	2003;	Reichle	and	Koster,	2005;	Scipal	
et	al.,	2008)	and	can	provide	improvement	in	skill	for	assessment	of	both	droughts	
and	floods	(Bolten	et	al.,	2010;	Brocca	et	al.,	2010).	Complementary	information	on	
soil	moisture	may	be	obtained	from	thermal	infrared	(TIR)	remote	sensing,	which	
indirectly	estimates	soil	moisture	from	the	thermal	response	of	the	vegetation	can-
opy	 to	 soil	 water	 stress.	 TIR	 soil	 moisture	 retrievals	 are	 described	 more	 fully	 in	
Chapter	7,	which	also	elucidates	their	potential	for	drought	monitoring.	Microwave	
(passive	 and	 active)	 and	 TIR	 approaches	 have	 their	 strengths	 and	 limitations	 but	
together	provide	complementary	information.	Many	of	the	issues	described	earlier	
regarding	 microwave-based	 soil	 moisture	 can	 be	 addressed	 with	 TIR	 approaches	
(including	sampling	of	the	root	zone,	skill	in	regions	of	denser	vegetation,	and	higher	
spatial	 resolution)	 (Hain	 et	 al.,	 2011).	Conversely,	 the	 limitations	of	TIR	 (such	 as	
lower	temporal	sampling	due	to	cloud	cover)	can	be	partly	addressed	by	the	micro-
wave	approach.	TIR	retrievals	have	been	demonstrated	as	useful	for	assimilation	into	
LSMs	(e.g.,	Crow	et	al.,	2008).	Further,	the	complementary	information	in	both	TIR	
and	microwave	retrievals	has	the	potential	to	be	mined	in	a	joint	data	assimilation	
framework	to	provide	improved	estimates	of	soil	moisture	relative	to	assimilation	of	
either	in	isolation	(Hain,	2010;	Li	et	al.,	2010).	Remotely	sensed	soil	moisture	can	
also	provide	complementary	information	to	remotely	sensed	precipitation	retrievals.	
For	example,	these	retrievals	represent	the	on-the-ground	signature	of	actual	rainfall	
as	compared	to	remote	sensing	estimates	that	represent	aboveground	precipitation	
rates	that	are	subject	to	advection	before	reaching	the	ground	(McCabe	et	al.,	2008).

The	NLDAS	LSMs	do	not	explicitly	model	groundwater,	although	their	parame-
terizations	of	baseflow	represent	the	contribution	of	deeper	soil	layers	to	streamflow.	
The	models	are	 therefore	subject	 to	biases	 in	 their	depiction	of	drought	dynamics	
and	especially	in	the	potentially	mediating	effect	of	groundwater	on	drought	propa-
gation.	Chapter	11	demonstrates	how	GRACE	measurements	of	total	water	storage	
change	(groundwater,	soil	moisture,	surface	water,	snow,	 lakes,	streams,	and	wet-
lands)	provide	useful	information	on	total	water	storage	dynamics	and	particularly	
groundwater.	Chapter	11	also	demonstrates	how	GRACE	data,	despite	their	coarse	
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resolution,	 could	 be	 ingested	 into	 an	 LSM	 that	 possesses	 a	 groundwater	 compo-
nent	 to	 help	 improve	 the	 depiction	 of	 longer-scale	 dynamics	 and	 may	 be	 crucial	
for	 improving	 drought	 assessment	 in	 groundwater-dominated	 regions.	 Similar	 to	
soil	moisture	retrievals,	the	blending	of	coarse-resolution	GRACE	data	with	higher-	
resolution	modeling	bridges	the	gap	between	observational	sampling	issues	and	the	
need	for	continuous	and	consistent	drought	information.

Further	avenues	for	merging	remote	sensing	information	into	the	NLDAS	to	provide	
a	consistent	and	more	robust	view	of	drought	exist,	such	as	with	snow	and	vegetation	
products.	For	snow,	this	is	particularly	important	in	snow-dominated	regions	such	as	the	
western	United	States	where	water	resources	and	agriculture	are	highly	dependent	on	
winter	snow	accumulation	and	timing	of	spring	melt.	Where	local	information	on	snow-
fall	and	accumulation	is	limited	to	gauges	in	valley	bottoms	or,	at	best,	sparse	high-
elevation	networks,	remote	sensing	is	an	underexploited	resource	that	can	address	some	
of	these	issues,	as	shown	in	Chapter	15.	For	vegetation,	the	current	NLDAS	models	use	
a	seasonal	representation	of	vegetation	phenology	(in	 terms	of	LAI	and	other	param-
eters)	that	is	fixed	from	year	to	year.	As	well	as	being	inconsistent	with	remote	sensing–
based	estimates	of	vegetation	stress,	this	also	has	implications	for	the	simulation	of	soil	
moisture	and	hydrological	drought	in	the	models	because	of	the	vegetation	controls	on	
interception	and	transpiration.	A	simple	approach	to	improving	this	is	to	incorporate	
remotely	sensed	vegetation	information,	such	as	NDVI,	into	the	model	inputs.

10.6  SUMMARY

The	 NLDAS-2	 provides	 a	 temporally	 and	 spatially	 consistent,	 quantitative	 depic-
tion	 of	 drought	 history,	 current	 conditions,	 and	 future	 seasonal	 changes.	 The	 use	
of	observation-forced,	physically	based	models	enables	all	aspects	of	hydrological	
drought	to	be	assessed	and	multiple	models	allow	for	the	estimation	of	uncertainties.	
Comparison	across	models	shows	encouraging	consistency	in	the	depiction	of	large-
scale	drought	events,	although	the	development	of	drought	at	more	localized	scales	
appears	to	differ	considerably	across	models	despite	the	commonality	of	meteoro-
logical	forcings	and	underlying	landscape	parameters.	Improvements	can	be	made,	
particularly	through	the	increased	use	of	remote	sensing	data.	For	example,	remotely	
sensed	soil	moisture	has	the	potential	to	augment	the	system,	either	directly	as	an	
additional	monitoring	variable	or	indirectly	via	assimilation.	Despite	the	coarse	spa-
tial	 resolution	and	 limited	utility	over	areas	with	high	vegetation	biomass	density,	
microwave-based	remote	sensing	of	soil	moisture	is	responsive	to	precipitation	and	
can	discern	between	wet	or	dry	periods	at	monthly	to	seasonal	time	scales,	which	
is	useful	 for	drought	monitoring.	Microwave	soil	moisture	 retrievals	may	actually	
provide	a	better	indication	of	wet	areas	than	radar	or	in	regions	with	sparse	gauge	
networks,	 and	 can	 be	 used	 to	 augment	 NLDAS-based	 model	 estimates	 using	 an	
assimilation	framework	to	merge	the	NLDAS	and	remote	sensing	soil	moisture	prod-
ucts.	There	is	also	potential	to	expand	the	system	globally,	particularly	for	regions	
such	as	Africa	with	sparse	ground	observations	(Sheffield	et	al.,	2008c),	where	there	
is	heavy	reliance	on	remote	sensing	to	provide	meteorological	data	for	the	forcings	
and	hydrologic	variables	used	for	validation	and	assimilation.	From	a	broader	per-
spective,	an	assimilation	approach	within	an	NLDAS-type	system	is	likely	the	most	
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promising	way	forward	for	exploiting	the	breadth	of	complementary	remote	sensing	
products	described	in	this	book	and	providing	a	more	consistent	picture	of	drought.
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FIGURE 10.4 Snapshots of four major drought events from June soil moisture percentiles 
from the MME and the four models. Columns are (1) 1988, (2) 1996, (3) 2002, and (4) 2007.
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FIGURE 10.5 Statistics of drought duration and frequency for the four LSMs for 1979–2008 
calculated from monthly soil moisture percentiles. A drought is defined at each grid cell when the 
soil moisture percentile drops below 20%. (a) Total number of droughts, (b) number of short-term 
(1–3 month duration) droughts, (c) number of medium-term (7–12 month duration) droughts, (d) 
number of long-term (>12 month duration) droughts, and (e) the mean drought duration.
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FIGURE 10.6 Example of output fields from the NLDAS-2 drought monitor 
(http://www.emc.ncep.noaa.gov/mmb/nldas/drought/), showing anomaly data for the week 
ending on December 16, 2010, for (a) precipitation and multi-model averages of (b) evapo-
transpiration, (c) runoff, (d) streamflow, (e) soil moisture, and (f) snow water equivalent.
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FIGURE 10.7 Example of seasonal forecasts for May through September 2010, showing 
the likelihood of drought developing or persisting at lead times of 1–6 months. A drought 
is defined as soil moisture deficits below the 20th percentile, and the likelihood is based 
on ensemble forecast distributions. Forecasts are based on three methods: (1) CFS, (2) CPC 
official outlooks, and (3) ESP.



West

Southeast

West

Southeast

West

Southeast

Predicted soil moisture conditions
Estimated soil moisture conditions

from the drought monitoring

Jan 2007

Feb 2007

Mar 2007

1 5 10

3030

3030

3030

1010

1010

1010

1010
1010

20 30 70 80 90 95 99

FIGURE 10.8 Example of seasonal prediction of the 2007 U.S. drought (figure reproduced 
from Luo L. and E.F. Wood, Geophys. Res. Lett., 34, L22702, 2007). Predictions of soil mois-
ture percentiles (%) (left column) were made starting on January 1, 2007, using downscaled 
and bias-corrected CFS seasonal climate forecasts to drive the VIC model, and are compared 
to estimated soil moisture from the real-time drought monitoring (right column). Left column 
shows the mean of the most likely ensemble set (shaded) and their spread (contour). The boxes 
indicate regions where drought was most severe during early 2007.
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FIGURE 10.9 Zones of applicability for microwave remote sensing retrievals of soil mois-
ture based on penetration through vegetation for frequencies in (a) X-band (10.7 GHz) and 
(b) L-band (1.4 GHz). Vegetation is characterized by its vegetation water content (kg m−2). 
Gray shading indicates areas where retrievals of soil moisture are not feasible.



0 5 10 15 20 25 30 35 40 45 50 55 60 65

% Volumetric

0 2 5 10 20 30 70 80 90 95 98 100

Percentile (%)

0 2 5 10 20 30 70 80 90 95 98 100

Percentile (%)

0 2 5 10 20 30 70 80 90 95 98 100

Percentile (%)

0(e)

(c)

(a) (b)

(d)

(f)2 5 10 20 30 70 80 90 95 98100

Percentile (%)

0 2 5 10 20 30 70 80 90 95 98100

Percentile (%)

FIGURE 10.10 (a) Dynamic range (% vol.) of AMSR-E daily soil moisture and (b–f) 
examples of monthly soil moisture percentiles for October 2007 for (b) AMSR-E, (c) Noah, 
(d) Mosaic, (e) SAC, and (f) VIC.
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FIGURE 10.12 Correlation between monthly AMSR-E and LSM monthly soil moisture 
percentiles for 2002–2008.
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