169 research outputs found

    Tensor-Based Multi-Modality Feature Selection and Regression for Alzheimer's Disease Diagnosis

    Full text link
    The assessment of Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) associated with brain changes remains a challenging task. Recent studies have demonstrated that combination of multi-modality imaging techniques can better reflect pathological characteristics and contribute to more accurate diagnosis of AD and MCI. In this paper, we propose a novel tensor-based multi-modality feature selection and regression method for diagnosis and biomarker identification of AD and MCI from normal controls. Specifically, we leverage the tensor structure to exploit high-level correlation information inherent in the multi-modality data, and investigate tensor-level sparsity in the multilinear regression model. We present the practical advantages of our method for the analysis of ADNI data using three imaging modalities (VBM- MRI, FDG-PET and AV45-PET) with clinical parameters of disease severity and cognitive scores. The experimental results demonstrate the superior performance of our proposed method against the state-of-the-art for the disease diagnosis and the identification of disease-specific regions and modality-related differences. The code for this work is publicly available at https://github.com/junfish/BIOS22

    Learning-based deformable image registration for infant MR images in the first year of life

    Get PDF
    Many brain development studies have been devoted to investigate dynamic structural and functional changes in the first year of life. To quantitatively measure brain development in such a dynamic period, accurate image registration for different infant subjects with possible large age gap is of high demand. Although many state-of-the-art image registration methods have been proposed for young and elderly brain images, very few registration methods work for infant brain images acquired in the first year of life, because of (1) large anatomical changes due to fast brain development and (2) dynamic appearance changes due to white matter myelination

    A prospective study on the association between spinal anesthesia and obesity

    Get PDF
    Purpose: To compare the outcomes of spinal anesthesia in obese and non-obese patients.Methods: In this study, 199 patients who underwent total knee replacement arthroplasty (TKRA) were categorized into obesity group (n = 61) and non-obesity group (n = 138). Anesthesia was considered successful if a bilateral T12 sensory blockage occurred within the first 15 min of injection of intrathecal drug. Parameters that influence spinal anesthesia were analyzed using logistic regression by means of multiple variables that independently influence the outcome of spinal anesthesia.Results: It was observed that the independent predictors for successful anesthesia in the patients were dose of bupivacaine (odds ratio at 95 % confidence interval = 2.08; range: 1.61 - 2.67) and obesity status (odds ratio at 95 % confidence interval = 2.83; range: 1.21 - 6.49). The outcome of the multivariate analysis also indicated that the dose of bupivacaine, body mass index (BMI) and obesity were predictors of spinal anesthesia. It was also found that the period of the sensory blockage due to bupivacaine was longer in the obesity group than in the non-obesity group.Conclusion: Sensory blockage in bupivacaine anesthesia during TKRA is influenced by dose of bupivacaine, obesity and BMI.Keywords: Spinal anesthesia, Total knee replacement arthroplasty, Bupivacaine, Obesity, Body mass index, Logistic regressio

    A Major and Stable QTL for Bacterial Wilt Resistance on Chromosome B02 Identified Using a High-Density SNP-Based Genetic Linkage Map in Cultivated Peanut Yuanza 9102 Derived Population

    Get PDF
    Bacterial wilt (BW) is one of the important diseases limiting the production of peanut (Arachis hypogaea L.) worldwide. The sufficient precise information on the quantitative trait loci (QTL) for BW resistance is essential for facilitating gene mining and applying in molecular breeding. Cultivar Yuanza 9102 is BW resistant, bred from wide cross between cultivated peanut Baisha 1016 and a wild diploid peanut species A. chacoense with BW resistance. In this study, we aim to map the major QTLs related to BW-resistance in Yuanza 9102. A high density SNP-based genetic linkage map was constructed through double-digest restriction-site-associated DNA sequencing (ddRADseq) technique based on Yuanza 9102 derived recombinant inbred lines (RILs) population. The map contained 2,187 SNP markers distributed on 20 linkage groups (LGs) spanning 1566.10 cM, and showed good synteny with AA genome from A. duranensis and BB genome from A. ipaensis. Phenotypic frequencies of BW resistance among RIL population showed two-peak distribution in four environments. Four QTLs explaining 5.49 to 23.22% phenotypic variance were identified to be all located on chromosome B02. The major QTL, qBWB02.1 (12.17–23.33% phenotypic variation explained), was detected in three environments showing consistent and stable expression. Furthermore, there was positive additive effect among these major and minor QTLs. The major QTL region was mapped to a region covering 2.3 Mb of the pseudomolecule B02 of A. ipaensis which resides in 21 nucleotide-binding site -leucine-rich repeat (NBS-LRR) encoding genes. The result of the major stable QTL (qBWB02.1) not only offers good foundation for discovery of BW resistant gene but also provide opportunity for deployment of the QTL in marker-assisted breeding in peanut

    Updating the therapeutic role of ginsenosides in breast cancer: a bibliometrics study to an in-depth review

    Get PDF
    Breast cancer is currently the most common malignancy and has a high mortality rate. Ginsenosides, the primary bioactive constituents of ginseng, have been shown to be highly effective against breast cancer both in vitro and in vivo. This study aims to comprehensively understand the mechanisms underlying the antineoplastic effects of ginsenosides on breast cancer. Through meticulous bibliometric analysis and an exhaustive review of pertinent research, we explore and summarize the mechanism of action of ginsenosides in treating breast cancer, including inducing apoptosis, autophagy, inhibiting epithelial-mesenchymal transition and metastasis, and regulating miRNA and lncRNA. This scholarly endeavor not only provides novel prospects for the application of ginsenosides in the treatment of breast cancer but also suggests future research directions for researchers

    Single Fasting Plasma Glucose Versus 75-g Oral Glucose-Tolerance Test in Prediction of Adverse Perinatal Outcomes::A Cohort Study

    Get PDF
    Background: There remains uncertainty regarding whether a single fasting glucose measurement is sufficient to predict risk of adverse perinatal outcomes. Methods: We included 12,594 pregnant women who underwent a 75-g oral glucose-tolerance test (OGTT) at 22–28 weeks' gestation in the Born in Guangzhou Cohort Study, China. Outcomes were large for gestational age (LGA) baby, cesarean section, and spontaneous preterm birth. We calculated the area under the receiver operator characteristic curves (AUCs) to assess the capacity of OGTT glucose values to predict adverse outcomes, and compared the AUCs of different components of OGTT. Results: 1325 women had a LGA baby (10.5%). Glucose measurements were linearly associated with LGA, with strongest associations for fasting glucose (odds ratio 1.37, 95% confidence interval 1.30–1.45). Weaker associations were observed for cesarean section and spontaneous preterm birth. Fasting glucose have a comparable discriminative power for prediction of LGA to the combination of fasting, 1 h, and 2 h glucose values during OGTT (AUCs, 0.611 vs. 0.614, P = 0.166). The LGA risk was consistently increased in women with abnormal fasting glucose (≥5.1 mmol/l), irrespective of 1 h or 2 h glucose levels. Conclusions: A single fasting glucose measurement performs comparably to 75-g OGTT in predicting risk of having a LGA baby

    Molecular analysis of phosphomannomutase (PMM) genes reveals a unique PMM duplication event in diverse Triticeae species and the main PMM isozymes in bread wheat tissues

    Get PDF
    BACKGROUND: Phosphomannomutase (PMM) is an essential enzyme in eukaryotes. However, little is known about PMM gene and function in crop plants. Here, we report molecular evolutionary and biochemical analysis of PMM genes in bread wheat and related Triticeae species. RESULTS: Two sets of homoeologous PMM genes (TaPMM-1 and 2) were found in bread wheat, and two corresponding PMM genes were identified in the diploid progenitors of bread wheat and many other diploid Triticeae species. The duplication event yielding PMM-1 and 2 occurred before the radiation of diploid Triticeae genomes. The PMM gene family in wheat and relatives may evolve largely under purifying selection. Among the six TaPMM genes, the transcript levels of PMM-1 members were comparatively high and their recombinant proteins were all enzymatically active. However, PMM-2 homoeologs exhibited lower transcript levels, two of which were also inactive. TaPMM-A1, B1 and D1 were probably the main active isozymes in bread wheat tissues. The three isozymes differed from their counterparts in barley and Brachypodium distachyon in being more tolerant to elevated test temperatures. CONCLUSION: Our work identified the genes encoding PMM isozymes in bread wheat and relatives, uncovered a unique PMM duplication event in diverse Triticeae species, and revealed the main active PMM isozymes in bread wheat tissues. The knowledge obtained here improves the understanding of PMM evolution in eukaryotic organisms, and may facilitate further investigations of PMM function in the temperature adaptability of bread wheat

    Dual Activities of ACC Synthase: Novel Clues Regarding the Molecular Evolution of Acs Genes

    Get PDF
    Ethylene plays profound roles in plant development. The rate-limiting enzyme of ethylene biosynthesis is 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS), which is generally believed to be a single-activity enzyme evolving from aspartate aminotransferases. Here, we demonstrate that, in addition to catalyzing the conversion of S-adenosyl-methionine to the ethylene precursor ACC, genuine ACSs widely have Cβ-S lyase activity. Two N-terminal motifs, including a glutamine residue, are essential for conferring ACS activity to ACS-like proteins. Motif and activity analyses of ACS-like proteins from plants at different evolutionary stages suggest that the ACC-dependent pathway is uniquely developed in seed plants. A putative catalytic mechanism for the dual activities of ACSs is proposed on the basis of the crystal structure and biochemical data. These findings not only expand our current understanding of ACS functions but also provide novel insights into the evolutionary origin of ACS genes

    Common susceptibility variants are shared between schizophrenia and psoriasis in the Han Chinese population

    Get PDF
    Previous studies have shown that individuals with schizophrenia have a greater risk for psoriasis than a typical person. This suggests that there might be a shared genetic etiology between the 2 conditions. We aimed to characterize the potential shared genetic susceptibility between schizophrenia and psoriasis using genome-wide marker genotype data
    corecore