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Abstract

Purpose—Many brain development studies have been devoted to investigate dynamic structural 

and functional changes in the first year of life. To quantitatively measure brain development in 

such a dynamic period, accurate image registration for different infant subjects with possible large 

age gap is of high demand. Although many state-of-the-art image registration methods have been 

proposed for young and elderly brain images, very few registration methods work for infant brain 

images acquired in the first year of life, because of (1) large anatomical changes due to fast brain 

development and (2) dynamic appearance changes due to white matter myelination.

Methods—To address these two difficulties, we propose a learning-based registration method to 

not only align the anatomical structures but also alleviate the appearance differences between two 

arbitrary infant MR images (with large age gap) by leveraging the regression forest to predict both 

the initial displacement vector and appearance changes. Specifically, in the training stage, two 

regression models are trained separately, with (1) one model learning the relationship between 

local image appearance (of one development phase) and its displacement toward the template (of 

another development phase) and (2) another model learning the local appearance changes between 

the two brain development phases. Then, in the testing stage, to register a new infant image to the 

template, we first predict both its voxel-wise displacement and appearance changes by the two 

learned regression models. Since such initializations can alleviate significant appearance and shape 

differences between new infant image and the template, it is easy to just use a conventional 

registration method to refine the remaining registration.

Results—We apply our proposed registration method to align 24 infant subjects at five different 

time points (i.e., 2-week-old, 3-month-old, 6-month-old, 9-month-old, and 12-month-old), and 
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achieve more accurate and robust registration results, compared to the state-of-the-art registration 

methods.

Conclusions—The proposed learning-based registration method addresses the challenging task 

of registering infant brain images and achieves higher registration accuracy compared with other 

counterpart registration methods.
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1. INTRODUCTION

During the first year of postnatal development, the human brain grows rapidly in brain 

volume and also dramatically changes in both cortex and white-matter structures1, 2. For 

instance, the whole brain volume increases from ~36% at 2–4 weeks to ~72% of adult 

volume at 12 months1, 3. Several neuroscience studies aimed to understand the human brain 

development in this dynamic period. Modern imaging, such as MRI (magnetic resonance 

imaging), provides a non-invasive measurement of the whole brain. Hence, MRI has been 

increasingly used in many neuroimaging-based studies of early brain development and 

developmental disorders3–5.

To quantify structural changes across infant subjects, deformable image registration can 

provide an accurate special normalization of subtle geometric difference. Although many 

image registration methods6–12 have been proposed in the last two decades, very few 

methods work for infant MR brain images acquired during early development, due to the 

two following difficulties:

1. Fast brain development. As shown in Fig. 1, not only the whole brain volume 

expands, but also the folding patterns in the cortical regions develop rapidly from 

birth to 1 year old. Hence, infant image registration is required to have the 

capacity of dealing with this large deformation.

2. Dynamic and non-linear appearance changes across different brain development 

stages. In general, there are three stages of brain development in the first 

year13, 14, i.e., (1) infantile stage (≤5 months), (2) iso-intense stage (6–8 months), 

and (3) early adult-like stage (≥9 months). As reflected by different brain time 

the intensity histograms in Fig. 1, image appearances in WM (white matter) and 

GM (gray matter) change dramatically due to white matter myelination. Since 

many image registration methods are mainly based on image intensity or local 

appearance15–20, such dynamic appearance changes over time can pose 

significant difficulty for infant brain image registration.

To address the above two difficulties, we propose a novel learning-based registration 

framework to accurately register any infant image in the first year of life (even with possible 

significant age gap) to a pre-defined template image. Since volumetric image is in high 

dimension, we leverage regression forest21–23 to learn two complex mappings in a patchwise 

manner: (1) Patchwise appearance-displacement model that characterizes the mapping from 
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the patchwise image appearance to the voxelwise displacement vector, where the 

displacement at the patch center points to the corresponding location in the template image 

space; (2) Patchwise appearance-appearance model that encodes the evolution of patchwise 

appearance from one particular brain development stage to the corresponding image patch in 

the template domain (of another brain development stage). In the application stage, before 

registering the new infant image to the template, for each voxel in the new infant image we 

predict its initial displacement to the template by the learned patchwise appearance-
displacement model. In this way, we obtain a dense deformation field to initialize the 

registration of the new infant image to the template. Then, we further apply the learned 

patchwise appearance-appearance model to predict the template-like appearance for the new 

infant image. With this initialized deformation field and also the estimated appearance for 

the new infant image under registration, many conventional registration methods, e.g., 

diffeomorphic Demons15, 16, 24–26, can be used to estimate the small remaining deformations 

between the new infant brain image and the template.

In our previous work, we have proposed a sparse representation-based image registration 

method27 for infant brains, by leveraging the known temporal correspondences among the 

training subjects to guide the image registration of two new infant images at different time 

points. Specifically, to register the two new infant images with possible large age gap, we 

first identify the corresponding image patches between each new infant image and its 

respective training images with similar age by sparse representation technique. Then, the 

registration between the two new infant images can be assisted by the learned growth 

trajectories from one time point to another time point. However, this method is very time 

consuming to solve the sparse representation problem at each image point, thus making it 

less attractive in clinical applications.

In this paper, we have comprehensively evaluated the registration performance of our 

proposed method for infant images at 2-week-old, 3-month-old, 6-month-old, 9-month-old, 

and 12-month-old with comparison to the state-of-the-art deformable image registration 

methods, including diffeomorphic Demons registration method15, 16 (http://www.insight-

journal.org/browse/publication/154), the SyN registration method in ANTs package (http://

sourceforge.net/projects/advants/) using mutual information17, 18 and cross correlation19, 20 

as similarity measures, and 3D-HAMMER28 using the segmentation images obtained with 

iBEAT software (http://www.nitrc.org/projects/ibeat/)29. Based on both quantitative 

measurements and visual inspection, our proposed learning-based registration method 

outperforms all other deformable image registration methods under comparison for the case 

of registering infant brain MR image with large anatomical and appearance changes.

The remaining parts of this paper are organized as follows. In Section 2, we present 

technical details of the proposed regression-forest-based infant brain registration method. In 

Section 3, we give experimental results. Finally, in Section 4, the conclusion is provided.

2. METHOD

The goal of our infant brain registration method is to register any infant brain images in the 

first year of life with possible large age gap to the template image T. Our learning-based 
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infant registration method consists of training and application stages, as detailed in the next 

subsections.

Each subject in the training dataset has both MRI structural and DTI scans at birth, 3 months 

old, 6 months old, 9months old and 12 months old. It is worth indicating that no ground-

truth deformation fields between the subject and the template brain images are available, 

thus difficult to train and validate our learning models. To deal with this critical issue, we 

use a multimodal longitudinal infant brain segmentation algorithm14 to segment each time-

point image into WM, GM, and CSF by leveraging both multimodal image information and 

the longitudinal heuristics in temporal domain. And then these segmentation results are 

manually edited. Since the segmented images are free from appearance difference, we can 

use these segmented images to estimate the deformation field between each training image 

and the template image by 4D-HAMMER registration method30. Next, the estimated 

deformation fields (based on the segmented images) can be considered as ground truth (or 

target deformation fields) for both training and validating our appearance-displacement 

model. Although these obtained deformation fields are not the gold standard for training, 

they can approximately reproduce actual anatomical correspondences, thus giving a way to 

provide the initial deformation field by our proposed appearance-displacement model.

2.A. Training stage – Learn to predict the deformation and appearance changes by 
respective regression forest models

In the training stage, N MR image sequences , each with M = 

5 time points (scanned at 2-week-old, 3-month-old, 6-month-old, 9-month-old, and 12-

month-old), are used as the training dataset. All data are transformed from each subject’s 

native space to a randomly selected template space via affine registration by FSL’s linear 

registration tool (FLIRT) in FSL package31. Notice that, although in the application stage 

only the T1- or T2- weighted MR images (depending on the scanning time-point) will be 

used for registration, in the training images we use multimodal images, such as T1-

weighted, T2-weighted MR images, and DTI (diffusion tensor imaging), to obtain tissue 

segmentation images for helping training. Thanks to the complete longitudinal image 

information and also the complementary multimodal imaging information, we first deploy 

the state-of-the-art longitudinal multimodal image segmentation method29, 32 to accurately 

segment each infant brain image to WM (white matter), GM (gray matter), and CSF 

(cerebrospinal fluid). Since there are no any appearance changes in these segmented images, 

we use a longitudinal image registration method30 to simultaneously calculate the temporal 

deformation fields from every time point to a pre-defined template image T, with the 

temporal consistency enforced by the estimated spatial deformation fields along time. Thus, 

we obtain the deformation fields . It is worth noting that our goal of 

training patchwise appearance-displacement model is to predict the displacement vector at 

the center of subject image patch (prior to image refinement registration) in the application 

stage. Therefore, we need to reverse each deformation field  to make its native space 

correspond with each training image space, i.e., . We follow the 

diffeomorphism principle in33 to reverse  by (1) estimating the velocity field from the 

obtained deformation field and (2) integrating the velocity in the reversed order to obtain the 
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reversed deformation field. Thus, for each voxel u in the training image , its corresponding 

location in the template image space is .

Since the human brain develops dramatically in the first year, we train both the patchwise 

appearance-displacement and patchwise appearance-appearance regression models from 2-

week-old, 3-month-old, 6-month-old, and 9-month-old to 12-month-old domain (used as 

template time point) separately. In the following, we take the 3-month-old phase (i.e., t=2) as 

an example to explain the appearance-displacement learning procedure.

2.A.1. Learn patchwise appearance-displacement model—Training samples for 

patchwise appearance-displacement model consist of pairs of the local image patch 

extracted at the uniformly randomly sampled voxel u of training image  and its 

displacement vector . Regression forest21–23 is used to learn the relationship between 

local image patch  and displacement vector . Specifically, we calculate several 

patchwise image features from , such as intensity, 3-D Haar-like features, and 

coordinates. The 3-D Haar-like features of a patch are computed as the local mean intensity 

of any randomly displaced cubical region, or the mean intensity difference over any two 

randomly displaced, asymmetric cubical regions14, where the center of the randomly 

selected region is located in the patch. To train a tree in the regression forest, the parameters 

of each node are learned recursively, starting at the root node. Then, the training samples are 

recursively split into left and right nodes by selecting the optimal feature and threshold. 

Suppose Θ denotes a node in the regression forest, and then its optimal feature and threshold 

are determined by maximizing the following objective function,

(1)

where Θi ( ) denotes the left/right children node of the node Θ. Wi denotes the 

number of training samples at the node Θi. W is the number of training samples Z(Θ) at the 

node Θ. σ(Θ) denotes a function that measures the variance of samples Z(Θ as below,

(2)

(3)

where  is the mean displacement vector of all training samples at the node Θ. After 

determining the optimal feature and threshold for the node Θ by maximizing Eq. (1), the 

training samples are split into left and right child nodes by comparing the selected features 

with the learned threshold. The same splitting process is recursively applied on the left and 
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right child nodes until the maximal tree depth is reached or the number of training samples 

at one node is less than a certain amount. When the splitting stops, we consider the current 

node as a leaf node and store the mean displacement there for future prediction.

2.A.2. Learn patchwise appearance-appearance model—Training samples for 

patchwise appearance-appearance model consist of the local image patch  centered at 

a uniformly randomly sampled point u of the training image  and the corresponding image 

patch  extracted at the location  of the template T. We use the same 

regression forest learning procedure (as described above) to train the patchwise appearance-
appearance model, except that the mean displacement vector in the above is replaced with 

the mean of the template image patches from all samples stored at the leaf node. 

Specifically, to estimate the template-like patch appearance for the patch Ps(u) (u ∈ Ωs) of 

the new subject image S, we consider the mean image patch stored at the destination leaf 

node as the prediction/estimation.

2.B. Application stage – Register new infant brain images from the first year of life

We register the new infant subject S to the same template T that is used in the training stage 

in three steps: 1) predict initial deformation field, 2) predict appearance change, and 3) 

estimate the remaining deformations. The registration progress is illustrated in Fig. 2.

2.B.1. Apply patchwise appearance-displacement model – Predict an initial 
deformation field—We first visit each voxel u of the new infant subject S (u ∈ Ωs) and use 

the learned patchwise appearance-displacement model to predict its displacement , 

pointing to the template image, based on the image patch Ps(u) extracted at u. In this way, 

we obtain the dense deformation field  and further calculate the initial 

deformation field F by reversing the dense deformation field H, since the deformation field 

(deforming the subject image S to the template space ΩT) should be defined in the template 

image space, i.e., .

Given a new image patch Ps(u) (u ∈ Ωs) from a testing subject S, we first extract the same 

patchwise image features from Ps(u). Then, based on the learned feature and threshold at 

each node, the testing image patch Ps(u) is guided towards leaf nodes of different tree. When 

it reaches the leaf node of each tree, the mean displacement vector stored in the leaf node is 

used as the predicted displacement vector. For robustness, we train multiple regression trees 

independently using the idea of bagging. Thus, the final prediction is the average of the 

predicted displacement vectors from all different decision trees. The thin-plate spline 

(TPS)34 is used to interpolate and smooth the dense deformation field after obtaining the 

initial deformation on each voxel. Specifically, we first check the histogram of Jacobian 

determinant values, and then select the points with Jacobian determinant values larger than 0 

to calculate the target point set using the learned deformation field. The deformation field 

can be updated by the TPS smoothness measurement with a fixed regularization term35, 

which is used to ensure the topology preservation of the deformation field. Note that the 

topology preservation is necessary for the invertibility of the deformation field. Several 

strategies are also used to prevent the potential issues in reversing deformation field: (1) We 
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increase the strength of smoothness regularization term in TPS interpolation. (2) We check 

the Jacobian determinant of interpolated dense deformation field. If the Jacobian 

determinant is greater or smaller than a fixed threshold, we will drop the control points in 

that region and re-interpolate. We repeat this procedure until all Jacobian determinants in the 

image domain are within a certain threshold. We believe more advanced interpolation 

method (e.g., geodesic interpolation36, 37) can better preserve the topology of the 

deformation field. Fig. 3 shows the accuracy of predicted displacement vector at each voxel 

for intra-subject registration (from 3-month-old to 12-month-old) in terms of voxel-wise 

residual error w.r.t. the ground-truth deformation that is obtained by registering the 

segmented images. According to the accumulative histogram in Fig. 3 (b), it is apparent that 

almost 96.7% residual errors are within 1mm. Fig. 3 (c) and (d) show the examples of a 

ground-truth deformation field and the learned deformation field during the leave-one-out 

validation procedure.

2.B.2. Apply patchwise appearance-appearance model – Predict appearance 

changes—After deforming the subject image S from its native space  to the template 

space , we further use the learned patchwise appearance-appearance model to convert 

local image appearance Ps(u) from the time point where the subject image S is scanned to 

 at the time point where the template image T is scanned. Thus, we finally obtain the 

roughly aligned subject image with its template-like appearance also estimated, which can 

be denoted as .

Fig. 4 demonstrates the performance of predicting appearance changes from 2-week-old, 3-

month-old, 6-month-old, and 9-month-old to 12-month-old, respectively. Specifically, Fig. 

4(a) shows the 12-month-old template image. It is clear that both shape and image 

appearance of this 12-month-old template image are quite different from those of 2-week-

old, 3-month-old, 6-month-old, and 9-month-old images (as shown in the top row of Fig. 4). 

After applying the patchwise appearance-displacement model to generate the initial 

deformation field, we largely remove the shape discrepancies, as shown in the middle row of 

Fig. 4, but the appearance differences remain. Next, for each (subject) image at 2-week-old, 

3-month-old, 6-month-old, and 9-month-old, we apply their respective learned patchwise 

appearance-appearance models on each image voxel and replace the original local image 

appearance by the predicted template-like (12-month-old) appearance. As shown in the 

bottom row of Fig. 4, not only the shape but also the image appearance become similar to 

the template after sequentially applying the patchwise appearance-displacement and 

patchwise appearance-appearance models at each time point.

Fig. 5 shows an example in each stage of estimating the deformation field during the intra-

subject registration (from 3-month-old to 12-month-old). Fig. 5(a) shows the target ground-

truth deformation field, Fig. 5(b) shows the learned deformation field by our appearance-

displacement model, Fig. 5(c) shows the remaining deformation field between the template-

like image and the template image, and Fig. 5(d) gives the final deformation field by 

composing our learned deformation field and our estimated remaining deformation field. 

The similarity between deformation fields in (a) and (d) indicates the accuracy of our 

proposed registration method.
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2.B.3. Estimate the remaining deformation – Finish the registration—Since the 

anatomical shape and appearance of learned  are almost similar to the template image T, 

we employ the classic diffeomorphic Demons15, 16 to complete the estimation of the 

remaining deformation G. Finally, the whole displacement vector  from subject image S to 

the template image T can be achieved by , where ‘∘’ stands for the deformation 

composition33. The schematic registration process is shown in Fig. 2.

2.C. Evaluation criterion

We use Dice ratio of combined WM and GM (as well as Dice ratio of hippocampus) as a 

measurement to quantitatively evaluate the accuracy of registration. The Dice ratio can be 

obtained as follows:

(4)

where A is the combined WM and GM voxel set of template and B is the combined WM and 

GM voxel set of registered subject when calculating Dice ratio for the combined WM and 

GM. We also measure the accuracy of the registration by calculating Dice ratio between the 

hippocampus voxel set of the template and the hippocampus voxel set of each registered 

subject. Note that hippocampi in longitudinal images of 10 subjects were manually 

segmented and used as ground truth, with one example shown in Fig. 6. The top row in Fig. 

6 shows the original slices (in axial, sagittal, coronal views), and the bottom row shows 

manually-segmented left and right hippocampi in red and green. After registering these 

images, we can warp their respective manually-segmented hippocampi to the template for 

computing the overlap of hippocampi with Dice ratio.

3. EXPERIMENT

Totally 24 infant subjects are included in the following experiments, where each subject has 

T1- and T2-weighted MR images at 2-week-old, 3-, 6-, 9-, and 12-month-old. The T1-

weighted images were acquired with a Siemens head-only 3T MR scanner and had 144 

sagittal slices at resolution 1 × 1 × 1 mm3. The T2-weighted images were obtained with 64 

axial slices at resolution 1.25 × 1.25 × 1.95 mm3. For each subject, the T2-weighted image 

was linearly aligned to its T1-weighted image at the same time-point using FLIRT31, 38 and 

then further isotropically up-sampled to 1 × 1 ×1mm3 resolution. In our experiments, the 

following parameters are used: (1) Input patch size: 7 × 7 ×7, and extracted from the training 

subjects; (2) Output patch size: 1 × 1 ×1, and extracted from the training template; (3) The 

length of Haar-like features: 300; (4) Random forest: the number of regression trees is 100, 

and the maximum tree depth is 50; and (5) The number of sampled patches is 50,000.

The image preprocessing includes three steps: skull-stripping32, 39, bias correction40, and 

image segmentation41. We compare the registration accuracy of our proposed learning-based 

infant brain registration method with several state-of-the-art deformable registration methods 

under the following three categories:
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1. Intensity-based image registration methods. We employ three deformable image 

registration methods that use different image similarity metrics, i.e., (a) 

diffeomorphic Demons15, 16, (b) mutual-information-based deformable 

registration method (MI-based)17, 18, and (c) cross-correlation-based deformable 

image registration method (CC-based)19, 20.

2. Feature-based image registration method. HAMMER28 is one of typical feature-

based registration methods, which computes geometric moments for all tissue 

types as morphological signature at each voxel. The deformation of image 

registration is driven by robust feature matching, instead of simple image 

intensity comparison. Apparently, the registration performance of this method is 

highly dependent on the segmentation quality. In the following experiment, we 

assume that the new to-be-registered infant image has been well-segmented, 

which is, however, not practical in real application since segmentation of infant 

image at single time point is very difficult without complementary longitudinal 

and multimodal information.

3. Other learning-based registration method. In our previous work, we proposed a 

sparse representation based registration method (SR-based)27, which leverages 

the known temporal correspondence in the training subjects to tackle the 

appearance gap between the two different time-point images under registration.

3.A. Registering images of same infant subject at different time points

In order to investigate subject-specific brain development, the images of the same infant 

subject at different time points need to be registered in many longitudinal studies. Thus, for 

each subject, we register 2-week, 3-, 6-, and 9-month-old images to its corresponding 12-

month-old image. Specifically, we carry out this experiment in a leave-one-out manner, 

where the longitudinal scans of 23 infant subjects are used to train both the patchwise 

appearance-displacement and appearance-appearance models at 2-week, 3-, 6-, and 9-

month-old separately, by using the corresponding 12-month-old image as the template. In 

the testing stage, we separately register the 2-week, 3-, 6-, and 9-month-old images of the 

remaining infant subject to its corresponding 12-month-old image.

Recall that all the longitudinal images of total 24 infant subjects have been well segmented 

by manually editing segmentation images from automatic tissue segmentation results, and 

thus can be used as ground truth. To quantitatively evaluate the registration accuracy, we 

calculate the Dice ratio of WM and GM between the 12-month-old segmentation image 

(used as template) and the registered segmentation image from each of other time points. 

Table I shows the mean and standard deviation of Dice ratios of the combined WM and GM 

under 24 leave-one-out cases by CC-based, MI-based, HAMMER, SR-based, our method 

after applying the learned patchwise appearance-displacement model (our method 1), and 

our full method (our method 2), respectively. It is apparent that (1) our proposed method 

achieves better Dice ratio. (2) Combining the appearance-displacement model and 

appearance-appearance model is a feasible way to register the images with large 

anatomical and appearance changes. (3) The improvements are significant to register subject 

infant brain MR images of 2-week-old and 3-month-old to the 12-month-old template. In 
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order to evaluate the performances of registration methods, Table II also shows Dice ratios 

of hippocampus voxel set between the registered image and the template image. As 

mentioned, we have ten subjects with their left and right hippocampi manually segmented. 

Thus, we warp the segmented hippocampus regions by CC-based, MI-based, HAMMER, 

SR-based and our method, for calculating the Dice ratios between the hippocampus voxel set 

of template and the hippocampus voxel set of each registered subject by Eq. (4). As shown 

in Table II, our proposed method obtains similar results as the SR-based method, but much 

higher hippocampal Dice ratio than other methods. From both Table I and II, we can see that 

(1) the learning-based method (our method and SR-based method) can obtain better 

registration accuracy, and (2) the proposed method is effective in registering infant brain MR 

images by using both appearance-displacement model and appearance-appearance model.

As shown in Fig. 2, our method first uses the learned patchwise appearance-displacement 
and appearance-appearance models to predict initial deformation field and correct the 

appearance differences, and then uses a conventional registration method to estimate the 

remaining deformations. Here we take diffeomorphic Demons15, 16 as a refinement 

registration method to demonstrate the advantages of our proposed learning-based 

registration method. The template image is shown in the first row of Fig. 7. From left to right 

columns, we show the registration results for 2-week-old, 3-, 6-, and 9-month-old images by 

linear registration (2nd row), direct use of diffeomorphic Demons (3rd row), CC (4th row), 

MI (5th row), HAMMER (6th row), diffeomorphic Demons after applying our learned 

patchwise appearance-displacement model (7th row), and our full method (last row), 

respectively. It is apparent that our learning-based registration method is effective for infant 

brain registration and outperforms both linear registration and the direct use of 

diffeomorphic Demons for registering 2-week-old and 3-month-old images to the 12-month-

old image, and (2) using both patchwise appearance-displacement model and appearance-
appearance model can improve registration performance for infant brain images with large 

anatomical and appearance changes.

In Fig. 8, we further show cortical surface distances between the template surface and the 

aligned subject surfaces, by registering the segmented images of template and subject 

images (used as the target ground-truth deformation fields in this study; 1st row), and 

registering the original MR images by linear registration (2nd row), diffeomorphic Demons 

(3rd row), and our learning-based method (bottom). As shown in Fig. 8, it is clear that our 

proposed registration method achieves more accurate registration results than comparison 

registration methods, especially in the regions inside the red circles.

3.B. Registering images of different infant subjects with age gap

It is more challenging to register infant brain images of different subjects with possible large 

age gap. Here, we use a leave-two-subjects-out strategy to evaluate the registration 

performance. Specifically, longitudinal scans of 22 infant subjects are used as the training 

dataset to train both the appearance-displacement and appearance-appearance models at 

each time point. The 12-month-old image of one remaining infant subject is treated as the 

template. Then, we register the 2-week, 3-, 6-, and 9-month-old images of another remaining 

infant subject to the template. We repeat such procedure for  times and report the 
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averaged Dice ratio of combined WM and GM in Table III by the CC-based, MI-based, 

HAMMER, SP-based, our method after applying just the learned patchwise appearance-
displacement model (our method 1), and our full method (our method 2), respectively. Table 

IV further shows the Dice ratios of hippocampus between registered images, on the ten 

subjects with manually segmented hippocampi. These hippocampal results show that: (1) 

our proposed method also achieves much better hippocampal Dice ratios for inter-subject 

infant brain registration. (2) The best Dice ratios are 0.480 ± 0.078, 0.537 ± 0.059, 0.590 

± 0.050, and 0.631 ± 0.061 for registration of the 2-week-old, 3-, 6-, and 9-month-old 

images to the 12-month-old image. (3) The Dice ratio on hippocampus is still low, indicating 

the necessity of further improving inter-subject registration.

Similarly, for visual inspection, the registration results of different infant images are shown 

in Fig. 9. The template T2-weighted (left) and T1-weighted (middle) images are shown in 

the first row. Also, the blue boxes are used to denote the T2-weighted images in their 

original and zoomed-up scales, and the red boxes are used to denote the T1-weighted MR 

images similarly. From left to right columns, we show the registration results for the 2-week-

old, 3-, 6-, and 9-month-old images by linear registration (2nd row), direct use of 

diffeomorphic Demons (3rd row), CC (4th row), MI (5th row), HAMMER (6th row), 

diffeomorphic Demons after applying our learned patchwise appearance-displacement 
model (7th row), and our full method (last row), respectively. Even under these inter-subject 

registration cases, it is also apparent that: (1) our learning-based registration method 

outperforms both linear registration and the direct use of diffeomorphic Demons for 

registering the 2-week-old and 3-month-old images to the 12-month-old image, and (2) 

using both the patchwise appearance-displacement model and appearance-appearance model 

can further improve the registration performance for infant subjects with large anatomical 

and appearance changes.

Our experiments were done on a computer cluster with 3.1 GHz Intel processors, 12 M L3 

cache, and 128 GB memory nodes. The average run times of Demons, MI-based, CC-based, 

3D-HAMMER, SR-based and our proposed method without considering the training time 

were 3.6, 12.5, 14.6, 28.7, 26.3, and 6.1 minutes, respectively.

CONCLUSION AND DISCUSSION

In this paper, we have presented a novel learning-based registration method to tackle the 

challenging problems of infant brain image registration in the first year of life. To address 

the rapid brain development and dynamic appearance changes, we employ regression forest 

to learn the complex anatomical development and appearance changes between different 

time points. Specifically, to register a new infant image with possible large age gap, we first 

apply the learned appearance-displacement and appearance-appearance models to initialize 

image registration and also adjust image appearance (becoming similar to the template 

image). Then, we use the conventional image registration method to estimate the remaining 

deformation field, which is often small and thus much easier to be estimated, compared to 

the case of direct estimation from the original images. We have extensively evaluated 

registration accuracy of our proposed method on 24 infant subjects with longitudinal scans, 
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and achieved higher registration accuracy compared with other counterpart registration 

methods.

It is worth indicating the potential bias in our current evaluation framework. Although 3D-

HAMMER in iBEAT and 4D-HAMMER (used to generate ground truth) are both performed 

on the segmented images, instead of the original intensity images, the mechanisms used to 

constrain the deformation field are the same when using HAMMER to register either 

segmented images or original images. Thus, the final results shown in all tables may be 

biased to those obtained by 3D-HAMMER (on registering original images). The better way 

is to use other independent methods for generating the ground truth.

For our future work, we also need to address several challenge. (1) How to obtain more 

accurate target deformation fields to evaluate the performance of our method. The 

deformation fields used as ground truth are not the gold standard, which limits the evaluation 

of our proposed method, specifically for inter-subject registration. Besides, although the 

target deformation fields can be used to evaluate the accuracy of our appearance-
displacement model, the final accuracy of our method is difficult to evaluate. Therefore, 

better validation strategy for infant brain registration is of high demand. (2) How to improve 

the accuracy of our learning models for further refinement of accuracy registration. 

Currently, we use simple image features from local subject patch to estimate the 

displacement or the template image intensities. Other advanced features, i.e., estimated with 

deep learning, should be considered. Besides, we will need to incorporate other registration 

algorithms into our learning-based registration framework, and further evaluate our methods 

with more infant images.
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Fig. 1. 
Dynamic infant brain development from 2-week-old to 12-month-old. The first row shows 

the histograms of WM and GM intensities for the T1-weighted MR images shown in the 

second row, acquired at 2-week-old, 3-, 6-, 9- and 12-month-old, respectively. These 

histograms and images show large anatomical and dynamic appearance changes for the 

infant MR brain images acquired in the first year of postnatal development.
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Fig. 2. 
The schematic illustration of the proposed registration process.
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Fig. 3. 
(a) The map of residual error between predicted displacement field at each voxel and its 

ground-truth displacement field. (b) The accumulative histogram of residual errors in the 

whole brain region. (c) A ground-truth deformation field. (d) Our learned deformation field.
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Fig. 4. 
Estimation of estimating both shape and appearance changes from 2-week-old, 3-month-old, 

6-month-old, and 9-month-old to the 12-month-old template image (a). From top to bottom 

row, we respectively show the original subject images, the deformed subject images after 

applying the learned patchwise appearance-displacement model, and the deformed subject 

images after applying both the learned patchwise appearance-displacement and appearance-

appearance models at 2-week-old (b), 3-month-old (c), 6-month-old (d), and 9-month-old 

(e). It can be observed that both anatomical and appearance discrepancies have been largely 

decreased after applying these two learned models.
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Fig. 5. 
Estimation of the deformation fields. (a) The target ground-truth deformation field, (b) the 

learned deformation field by our appearance-displacement model, and (c) the remaining 

deformation field estimated by registering the template-like image and the template image, 

and (d) the final deformation field by composing our learned deformation field and our 

estimated remaining deformation field
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Fig. 6. 
Demonstration of manually-segmented hippocampi in a 12-month-old infant brain MR 

image. The top row shows the original slices (in axial, sagittal, coronal views), and the 

bottom row shows manually-segmented left and right hippocampi in red and green.
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Fig. 7. 
Intra-subject registration results on infant brain images at different time points. The first row 

represents the 12-month-old image, which is used as the template. From left to right 

columns, we show registration results for 2-week-old, 3-, 6-, and 9-month-old images by 

linear registration (2nd row), direct use of diffeomorphic Demons (3rd row), CC (4th row), 

MI (5th row), HAMMER (6th row), diffeomorphic Demons after applying our learned 

patchwise appearance-displacement model (7th row), and our full method (last row), 

respectively. The 7th row shows that, after applying our learned appearance-displacement 
model, the anatomical structures of different time-point images become similar to the 
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template image shown in the first row. Moreover, the last row shows that, after applying both 

of our proposed learning models (our full method), not only the anatomical structures but 
also the appearances of different time-point images become similar to the template image.
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Fig. 8. 
Cortical surface distances between the template surface and the aligned subject surfaces, by 

registering the segmented images of template and subject images (used as the target ground-

truth deformation fields in this study (1st row), and registering the original MR images by 

linear registration (2nd row), diffeomorphic Demons (3rd row), and our learning-based 

method (bottom). The color-coding bar shows the template-to-aligned surface distance 

range.
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Fig. 9. 
Inter-subject registration results on infant brain images at different time points. The first row 

shows the 12-month-old template, with T2-weighted image (left) and T1-weighted image 

(middle). In the whole figure, the blue boxes denote the T2-weighted images, and the red 

boxes denote the T1-weighted images. From left to right columns, we show the registration 

results for the 2-week-old, 3-, 6-, and 9-month-old images by linear registration (2nd row), 

direct use of diffeomorphic Demons (3rd row), CC (4th row), MI (5th row), HAMMER (6th 

row), diffeomorphic Demons after applying our learned patchwise appearance-displacement 
model (7th row), and our full method (last row), respectively. Similar to Fig. 7, the 7th row in 

this figure shows that the anatomical discrepancies are decreased, and the 8th row shows that 

both anatomical and appearance discrepancies are decreased. Even for inter-subject 

registration case, as shown in the last row, our proposed method can still obtain good 

registration results.
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TABLE I

The mean and standard deviation of Dice ratios of the combined WM and GM for intra-subject registration, by 

aligning the 2-week-old, 3-, 6-, and 9-month-old images to the 12-month-old image via different methods. The 

best Dice ratio for each column is shown in bold.

Method 2-week to 12-month 3-month to 12-month 6-month to 12-month 9-month to 12-month

CC-based 0.714 ± 0.025 0.687 ± 0.031 0.797 ± 0.028 0.851 ± 0.019

MI-based 0.709 ± 0.028 0.694 ± 0.030 0.799 ± 0.029 0.850 ± 0.018

3D-HAMMER 0.764 ± 0.027 0.756 ± 0.028 0.806 ± 0.024 0.848 ± 0.021

SR-based 0.774 ± 0.015 0.778 ± 0.018 0.818 ± 0.016 0.858 ± 0.015

Our proposed method1 0.810 ± 0.044 0.783 ± 0.054 0.823 ± 0.056 0.892 ± 0.009

Our proposed method2 0.833 ± 0.029 0.826 ± 0.026 0.847 ± 0.041 0.892 ± 0.006
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TABLE II

The mean and standard deviation of Dice ratios of the hippocampus on ten intra-subjects, when registering the 

2-week-old, 3-, 6-, and 9-month-old images to the 12-month-old image via different methods. The best Dice 

ratio for each column is shown in bold.

Method 2-week to 12-month 3-month to 12-month 6-month to 12-month 9-month to 12-month

CC-based 0.579 ± 0.066 0.585 ± 0.065 0.681 ± 0.064 0.748 ± 0.045

MI-based 0.581 ± 0.072 0.593 ± 0.070 0.676 ± 0.061 0.751 ± 0.053

3D-HAMMER 0.601 ± 0.061 0.613 ± 0.062 0.683 ± 0.065 0.736 ± 0.051

SR-based 0.614 ± 0.063 0.635 ± 0.055 0.702 ± 0.059 0.762 ± 0.049

Our proposed method 0.615 ± 0.024 0.638 ± 0.047 0.702 ± 0.071 0.766 ± 0.052
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TABLE III

The mean and standard deviation of Dice ratios of the combined WM and GM for inter-subject registration, by 

aligning 2-week-old, 3-, 6-, and 9-month-old images to the 12-month-old image via different methods. The 

best Dice ratio for each column is shown in bold.

Method 2-week to 12-month 3-month to 12-month 6-month to 12-month 9-month to 12-month

CC-based 0.643 ± 0.030 0.618 ± 0.025 0.684 ± 0.024 0.722 ± 0.020

MI-based 0.614 ± 0.025 0.602 ± 0.022 0.675 ± 0.030 0.717 ± 0.022

3D-HAMMER 0.662 ± 0.023 0.642 ± 0.026 0.688 ± 0.025 0.715 ± 0.023

SR-based 0.673 ± 0.016 0.665 ± 0.017 0.695 ± 0.015 0.718 ± 0.018

Our proposed method 1 0.623 ± 0.029 0.633 ± 0.026 0.661 ± 0.050 0.676 ± 0.039

Our proposed method 2 0.692 ± 0.035 0.684 ± 0.037 0.726 ± 0.069 0.766 ± 0.033
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TABLE IV

The mean and standard deviation of Dice ratios of the hippocampus on ten INTER-subjects, when registering 

the 2-week-old, 3-, 6-, and 9-month-old images to the 12-month-old image via different methods. The best 

Dice ratio for each column is shown in bold.

Method 2-week to 12-month 3-month to 12-month 6-month to 12-month 9-month to 12-month

CC-based 0.442 ± 0.081 0.471 ± 0.078 0.573 ± 0.053 0.627 ± 0.053

MI-based 0.437 ± 0.073 0.465 ± 0.072 0.569 ± 0.058 0.631 ± 0.061

3D-HAMMER 0.461 ± 0.071 0.512 ± 0.069 0.568 ± 0.062 0.621 ± 0.050

SR-based 0.478 ± 0.063 0.535 ± 0.0.67 0.585 ± 0.062 0.625 ± 0.055

Our proposed method 0.480 ± 0.078 0.537 ± 0.059 0.590 ± 0.050 0.628 ± 0.079
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