2,022 research outputs found

    Comparison of acidic and enzymatic pectin extraction from passion fruit peels and its gel properties

    Get PDF
    The influences of extractor concentration, extraction temperature and time on the yield of pectin and degree of esterification (DE) were investigated by the acidic and enzymatic extraction methods. Citric acid and Celluclast were selected as pectin extractors for environmentally friendly reasons. The peels of yellow passion fruit using the acidic and enzymatic extraction methods gave pectin yield of 7.16 and 7.12%, and DE of 71.02 and 85.45% in the optimized condition of extraction time of 102 min with citric acid concentration of 0.19% (w/w) at 75C and Celluclast concentration of 1.67% (w/w) at 61.11C, respectively. The enzymatic extraction method has greater capability of producing high methoxyl pectin. The morphological features of fruit peel powder and the extracted pectin examined by scanning electron microscopy suggested that the nanostructure of wet passion fruit pectin was dependable on the type of extraction process. The formed pectin gel also has pseudoplastic liquid behavior and its viscosity was greatly affected by sugar. Pectin has been intensively used as natural gelling agent and stabilizer to alter rheological properties in food ingredients by most food processing industries to achieve desired textural quality. Pectin could be recovery from fruit wastes. The conversion of passion fruit peel into pectin offers great scope for utilization. Citric acid and enzymatic extraction methods are effectively used for pectin extraction which may be of interest by pectin industry and consumer with these eco-friendly processing technology with no using harmful chemicals. Furthermore, scientific work of this study such as the optimized condition, morphological features of extracted pectin and pectin gel formation contributes valuable information on pectin, which could be beneficial for pectin industry improving the process quality of pectin as well as process profitability

    IL-33 ameliorates Alzheimer’s disease-like pathology and cognitive decline

    Get PDF
    Alzheimer’s disease (AD) is a devastating condition with no known effective treatment. AD is characterized by memory loss as well as impaired locomotor ability, reasoning, and judgment. Emerging evidence suggests that the innate immune response plays a major role in the pathogenesis of AD. In AD, the accumulation of β-amyloid (Aβ) in the brain perturbs physiological functions of the brain, including synaptic and neuronal dysfunction, microglial activation, and neuronal loss. Serum levels of soluble ST2 (sST2), a decoy receptor for interleukin (IL)-33, increase in patients with mild cognitive impairment, suggesting that impaired IL-33/ST2 signaling may contribute to the pathogenesis of AD. Therefore, we investigated the potential therapeutic role of IL-33 in AD, using transgenic mouse models. Here we report that IL-33 administration reverses synaptic plasticity impairment and memory deficits in APP/PS1 mice. IL-33 administration reduces soluble Aβ levels and amyloid plaque deposition by promoting the recruitment and Aβ phagocytic activity of microglia; this is mediated by ST2/p38 signaling activation. Furthermore, IL-33 injection modulates the innate immune response by polarizing microglia/macrophages toward an antiinflammatory phenotype and reducing the expression of proinflammatory genes, including IL-1β, IL-6, and NLRP3, in the cortices of APP/PS1 mice. Collectively, our results demonstrate a potential therapeutic role for IL-33 in AD

    Simulation of impulsive loading on column using inflatable airbag technique

    Get PDF
    The purpose of this study was to simulate impulsive loading on columns by an innovative lab-based experimental technique that utilises inflatable airbags. Mild and stainless steel hollow sectioin columns with effective lengths of 955mm and under simply supported condition were used in this study

    Information and Particle Physics

    Full text link
    Information measures for relativistic quantum spinors are constructed to satisfy various postulated properties such as normalisation invariance and positivity. Those measures are then used to motivate generalised Lagrangians meant to probe shorter distance physics within the maximum uncertainty framework. The modified evolution equations that follow are necessarily nonlinear and simultaneously violate Lorentz invariance, supporting previous heuristic arguments linking quantum nonlinearity with Lorentz violation. The nonlinear equations also break discrete symmetries. We discuss the implications of our results for physics in the neutrino sector and cosmology

    Parametric (On-Design) Cycle Analysis for a Separate-Exhaust Turbofan Engine With Interstage Turbine Burner

    Get PDF
    Today s modern aircraft is based on air-breathing jet propulsion systems, which use moving fluids as substances to transform energy carried by the fluids into power. Throughout aero-vehicle evolution, improvements have been made to the engine efficiency and pollutants reduction. The major advantages associated with the addition of ITB are an increase in thermal efficiency and reduction in NOx emission. Lower temperature peak in the main combustor results in lower thermal NOx emission and lower amount of cooling air required. This study focuses on a parametric (on-design) cycle analysis of a dual-spool, separate-flow turbofan engine with an Interstage Turbine Burner (ITB). The ITB considered in this paper is a relatively new concept in modern jet engine propulsion. The ITB serves as a secondary combustor and is located between the high- and the low-pressure turbine, i.e., the transition duct. The objective of this study is to use design parameters, such as flight Mach number, compressor pressure ratio, fan pressure ratio, fan bypass ratio, and high-pressure turbine inlet temperature to obtain engine performance parameters, such as specific thrust and thrust specific fuel consumption. Results of this study can provide guidance in identifying the performance characteristics of various engine components, which can then be used to develop, analyze, integrate, and optimize the system performance of turbofan engines with an ITB. Visual Basic program, Microsoft Excel macrocode, and Microsoft Excel neuron code are used to facilitate Microsoft Excel software to plot engine performance versus engine design parameters. This program computes and plots the data sequentially without forcing users to open other types of plotting programs. A user s manual on how to use the program is also included in this report. Furthermore, this stand-alone program is written in conjunction with an off-design program which is an extension of this study. The computed result of a selected design-point engine will be exported to an engine reference data file that is required in off-design calculation

    A dissipative particle dynamics study of the realignment of a nanodroplet of a nematic in a weak external magnetic field

    Get PDF
    We present a dissipative particle dynamics (DPD) approach for simulating the realignment of a nematic nanodroplet suspended in an isotropic fluid following a switch in the direction of an applied external magnetic field. The interaction of the mesogens with the external field is weak relative to the inter-molecular interactions. The simulations were used to investigate the way orientational equilibrium is re-established. The results reveal that the realignment process of the nanodroplet is consistent with its fluid structure. The reorientation of the nanodroplet as a whole is found to be caused by an internal structural rearrangement rather than a coherent rotation of the centres of mass of the mesogens about the centre of the nanodroplet. The switch in the field direction furthermore is found to induce a transient spatial variation in the orientational order of the long axes of the mesogens: the orientational order parameters decreases on moving from the core of the nanodroplet to the surface in contact with the isotropic environment. The results highlight differences between the time evolution of the orientation of the long molecular axes in the field and the rotations of the centres of mass of the mesogens about the centre of the nanodroplet

    Spin-to-Orbital Angular Momentum Conversion in Semiconductor Microcavities

    Get PDF
    We experimentally demonstrate a technique for the generation of optical beams carrying orbital angular momentum using a planar semiconductor microcavity. Despite being isotropic systems, the transverse electric - transverse magnetic (TE-TM) polarization splitting featured by semiconductor microcavities allows for the conversion of the circular polarization of an incoming laser beam into the orbital angular momentum of the transmitted light field. The process implies the formation of topological entities, a pair of optical half-vortices, in the intracavity field

    Prevalence of ST9 methicillin-resistant Staphylococcus aureus among pigs and pig handlers in Malaysia.

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) of sequence type 398 (ST398) has frequently been detected in pigs and pig handlers. However, in Malaysia, sampling 360 pigs and 90 pig handlers from 30 farms identified novel ST9-spa type t4358-staphylococcal cassette chromosome mec type V MRSA strains that were found to transiently colonize more than 1% of pigs and 5.5% of pig handlers

    Genomic and Resistome Analyses of <em>Elizabethkingia anophelis</em> Strain B2D isolated from Dental Plaque of Patient

    Get PDF
    \ua9 2024, HH Publisher. All rights reserved.In this study, strain B2D isolated from a dental plaque sample of a human patient was studied for its general characteristics, taxonomic identification, genome features, and resistome profile. The bacterium exhibited antibiotic resistance to all beta-lactam antibiotics, nitrofuran, and sulfonamides, with high minimum inhibitory concentrations. It was only sensitive to the fluoroquinolone ciprofloxacin and intermediately susceptible to aminoglycoside tobramycin. A preliminary identification through 16S rRNA gene sequences revealed that it shared the highest sequence identity with Elizabethkingia anophelis subsp. endophytica JM-87T (100%) and Elizabethkingia anophelis subsp. anophelis R26T (99.31%). The draft genome of strain B2D was approximately 3.9 Mbp with 50 contigs and 35.5% GC content. A 16S rRNA gene and core genes-based phylogenetic analyses revealed a close phylogenetic relationship between strain B2D and the other Elizabethkingia type strains. An above species level threshold average nucleotide identity value confirmed its taxonomic identity as Elizabethkingia anophelis. Furthermore, we conducted a resistome analysis of strain B2D and Elizabethkingia type strains, revealing the presence of widespread antibiotic resistance genes, including beta-lactamases and genes associated with cationic antiseptic resistance and glycopeptide resistance. Overall, the multidrug resistant profile of strain B2D as elucidated and confirmed through whole genome analysis indicated its potential as a reservoir of beta-lactamase genes. Moreover, its presence within dental plaque in the human oral cavity prompts speculation regarding its role as an opportunistic pathogen capable of causing infections, particularly in immunocompromised individuals
    corecore