6 research outputs found

    Expression of MT4-MMP, EGFR, and RB in Triple-Negative Breast Cancer Strongly Sensitizes Tumors to Erlotinib and Palbociclib Combination Therapy.

    Full text link
    Abstract Purpose: Here, we investigated the clinical relevance of an unprecedented combination of three biomarkers in triple-negative breast cancer (TNBC), both in human samples and in patient-derived xenografts of TNBC (PDX-TNBC): EGFR, its recently identified partner (MT4-MMP), and retinoblastoma protein (RB).Experimental Design: IHC analyses were conducted on human and PDX-TNBC samples to evaluate the production of the three biomarkers. The sensitivity of cancer cells expressing or not MT4-MMP to anti-EGFR (erlotinib) or anti-CDK4/6 inhibitor (palbociclib) was evaluated in vitro in 2D and 3D proliferation assays and in vivo using xenografts and PDX-TNBC displaying different RB, MT4-MMP, and EGFR status after single (erlotinib or palbociclib) or combined (erlotinib + palbociclib) treatments.Results: EGFR and MT4-MMP were coexpressed in >70% of TNBC samples and PDX-TNBC, among which approximately 60% maintained RB expression. Notably, approximately 50% of all TNBC and PDX-TNBC expressed the three biomarkers. Single erlotinib and palbociclib treatments drastically reduced the in vitro proliferation of cells expressing EGFR and MT4-MMP when compared with control cells. Both TNBC xenografts and PDX expressing MT4-MMP, EGFR, and RB, but not PDX-TNBC with RB loss, were sensitive to erlotinib and palbociclib with an additive effect of combination therapy. Moreover, this combination was efficient in another PDX-TNBC expressing the three biomarkers and resistant to erlotinib alone.Conclusions: We defined a new association of three biomarkers (MT4-MMP/EGFR/RB) expressed together in 50% of TNBC and demonstrated its usefulness to predict the TNBC response to anti-EGFR and anti-CDK4/6 drugs used in single or combined therapy

    MT4-MMP and EGFR expression levels are key biomarkers for breast cancer patient response to chemotherapy and erlotinib.

    Full text link
    BACKGROUND: Triple-negative breast cancers (TNBC) are heterogeneous cancers with poor prognosis. We aimed to determine the clinical relevance of membrane type-4 matrix metalloproteinase (MT4-MMP), a membrane type matrix metalloproteinase that interacts with epidermal growth factor receptor (EGFR) overexpressed in >50% of TNBC. METHODS: We conducted a retrospective immunohistochemical analysis on human TNBC samples (n=81) and validated our findings in in vitro and in vivo assays. RESULTS: Membrane type-4 matrix metalloproteinase and EGFR are produced in 72.5% of TNBC samples, whereas those proteins are faintly produced by healthy tissues. Unexpectedly, tumour relapse after chemotherapy was reduced in samples highly positive for MT4-MMP. Mechanistically, this is ascribed to a higher sensitivity of MT4-MMP-producing cells to alkylating or intercalating chemotherapeutic agents, as assessed in vitro. In sharp contrast, MT4-MMP expression did not affect tumour cell sensitivity to paclitaxel that interferes with protease trafficking. Importantly, MT4-MMP expression sensitised cancer cells to erlotinib, a tyrosine kinase EGFR inhibitor. In a pre-clinical model, the growth of MT4-MMP overexpressing xenografts, but not of control ones, was reduced by epirubicin or erlotinib. The combination of suboptimal drug doses blocked drastically the growth of MT4-MMP-producing tumours. CONCLUSIONS: We demonstrate that MT4-MMP defines a sub-population of TNBC sensitive to a combination of DNA-targeting chemotherapeutic agents and anti-EGFR drugs.British Journal of Cancer advance online publication 14 February 2017; doi:10.1038/bjc.2017.23 www.bjcancer.com
    corecore