4,322 research outputs found
Recommended from our members
Deterministic Assembly of Arrays of Lithographically Defined WS2 and MoS2 Monolayer Features Directly from Multilayer Sources into Van der Waals Heterostructures
One of the major challenges in the van der Waals (vdW) integration of two-dimensional (2D) materials is achieving high-yield and high-throughput assembly of predefined sequences of monolayers into heterostructure arrays. Mechanical exfoliation has recently been studied as a promising technique to transfer monolayers from a multilayer source synthesized by other techniques, allowing the deposition of a wide variety of 2D materials without exposing the target substrate to harsh synthesis conditions. Although a variety of processes have been developed to exfoliate the 2D materials mechanically from the source and place them deterministically onto a target substrate, they can typically transfer only either a wafer-scale blanket or one small flake at a time with uncontrolled size and shape. Here, we present a method to assemble arrays of lithographically defined monolayer WS2 and MoS2 features from multilayer sources and directly transfer them in a deterministic manner onto target substrates. This exfoliate-align-release process - without the need of an intermediate carrier substrate - is enabled by combining a patterned, gold-mediated exfoliation technique with a new optically transparent, heat-releasable adhesive. WS2/MoS2 vdW heterostructure arrays produced by this method show the expected interlayer exciton between the monolayers. Light-emitting devices using WS2 monolayers were also demonstrated, proving the functionality of the fabricated materials. Our work demonstrates a significant step toward developing mechanical exfoliation as a scalable dry transfer technique for the manufacturing of functional, atomically thin materials
Frequency-Dependent Attenuation Analysis of Ground-Penetrating Radar Data
In the early 1990s, it was established empirically that, in many materials, ground-penetrating radar (GPR) attenuation is approximately linear with frequency over the bandwidth of a typical pulse. Further, a frequency-independent Q* parameter characterizes the slope of the band-limited attenuation versus frequency curve. Here, I derive the band-limited Q* function from a first-order Taylor expansion of the attenuation coefficient. This approach provides a basis for computing Q* from any arbitrary dielectric permittivity model. For Cole-Cole relaxation, I find good correlation between the first-order Q* approximation and Q* computed from linear fits to the attenuation coefficient curve over two-octave bands. The correlation holds over the primary relaxation frequency. For some materials, this relaxation occurs between 10 and 200 MHz, a typical frequency range for many GPR applications. Frequency-dependent losses caused by scattering and by the commonly overlooked problem of frequency-dependent reflection make it difficult or impossible to measure Q* from reflection data without a priori understanding of the materials. Despite these complications, frequency-dependent attenuation analysis of reflection data can provide valuable subsurface information. At two field sites, I find well-defined frequency-dependent attenuation anomalies associated with nonaqueous-phase liquid contaminants
Ground-Penetrating Radar Theory and Application of Thin-Bed Offset-Dependent Reflectivity
Offset-dependent reflectivity or amplitude-variationwith- offset (AVO) analysis of ground-penetrating radar (GPR) data may improve the resolution of subsurface dielectric permittivity estimates. A horizontally stratified medium has a limiting layer thickness below which thin-bed AVO analysis is necessary. For a typical GPR signal, this limit is approximately 0.75 of the characteristic wavelength of the signal. Our approach to modeling the GPR thin-bed response is a broadband, frequency-dependent computation that utilizes an analytical solution to the three-interface reflectivity and is easy to implement for either transverse electric (TE) or transverse magnetic (TM) polarizations. The AVO curves for TE and TM modes differ significantly. In some cases, constraining the interpretation using both TE and TM data is critical. In two field examples taken from contaminated-site characterization data, we find quantitative thin-bed modeling agrees with the GPR field data and available characterization data
Multifractal properties of resistor diode percolation
Focusing on multifractal properties we investigate electric transport on
random resistor diode networks at the phase transition between the
non-percolating and the directed percolating phase. Building on first
principles such as symmetries and relevance we derive a field theoretic
Hamiltonian. Based on this Hamiltonian we determine the multifractal moments of
the current distribution that are governed by a family of critical exponents
. We calculate the family to two-loop order in a
diagrammatic perturbation calculation augmented by renormalization group
methods.Comment: 21 pages, 5 figures, to appear in Phys. Rev.
Sensitive gravity-gradiometry with atom interferometry: progress towards an improved determination of the gravitational constant
We here present a high sensitivity gravity-gradiometer based on atom
interferometry. In our apparatus, two clouds of laser-cooled rubidium atoms are
launched in fountain configuration and interrogated by a Raman interferometry
sequence to probe the gradient of gravity field. We recently implemented a
high-flux atomic source and a newly designed Raman lasers system in the
instrument set-up. We discuss the applications towards a precise determination
of the Newtonian gravitational constant G. The long-term stability of the
instrument and the signal-to-noise ratio demonstrated here open interesting
perspectives for pushing the measurement precision below the 100 ppm level
PERFLUOROOCTANE SULFONATE (PFOS) AND PERFLUOROOCTANOATE (PFOA) CONTAMINATION OF WATER ENVIRONMENT IN ASIAN COUNTRIES
Joint Research on Environmental Science and Technology for the Eart
The Emergence of the Infrared transient VVV-WIT-06
We report the discovery of an enigmatic large-amplitude (ΔKs> 10.5 mag) transient event in near-IR data obtained by the VISTA Variables in the Via Lactea (VVV) ESO Public Survey. The object (designated VVV-WIT-06) is located at R.A. = 17:07:18.917, decl. = -39:06:26.45 (J2000), corresponding to Galactic coordinates l = 347.14539, b = 0.88522. It exhibits a clear eruption, peaking at Ks = 9 mag during 2013 July and fading to Ks ~ 16.5 in 2017. Our late near-IR spectra show post-outburst emission lines, including some broad emission lines (upward of {FWHM} ~ 3000 k/s). We estimate a total extinction of A_V=10--15 mag in the surrounding field, and no progenitor was observed in ZYJHKs images obtained during 2010-2012 (down to Ks> 18.5 mag). Subsequent deep near-IR imaging and spectroscopy, in concert with the available multiband photometry, indicate that VVV-WIT-06 may be either: (I) the closest Type I SN observed in about 400 years, (II) an exotic high-amplitude nova that would extend the known realm of such objects, or (III) a stellar merger. In all of these cases, VVV-WIT-06 is a fascinating and curious astrophysical target under any of the scenarios considered.Peer reviewe
- …