13 research outputs found

    Analysis of the dynamic co-expression network of heart regeneration in the zebrafish.

    Get PDF
    The zebrafish has the capacity to regenerate its heart after severe injury. While the function of a few genes during this process has been studied, we are far from fully understanding how genes interact to coordinate heart regeneration. To enable systematic insights into this phenomenon, we generated and integrated a dynamic co-expression network of heart regeneration in the zebrafish and linked systems-level properties to the underlying molecular events. Across multiple post-injury time points, the network displays topological attributes of biological relevance. We show that regeneration steps are mediated by modules of transcriptionally coordinated genes, and by genes acting as network hubs. We also established direct associations between hubs and validated drivers of heart regeneration with murine and human orthologs. The resulting models and interactive analysis tools are available at http://infused.vital-it.ch. Using a worked example, we demonstrate the usefulness of this unique open resource for hypothesis generation and in silico screening for genes involved in heart regeneration

    Beam Test Performance Studies of CMS Phase-2 Outer Tracker Module Prototypes

    No full text
    International audienceA new tracking detector will be installed as part of the Phase-2 upgrade of the CMS detector for the high-luminosity LHC era. This tracking detector includes the Inner Tracker, equipped with silicon pixel sensor modules, and the Outer Tracker, consisting of modules with two parallel stacked silicon sensors. The Outer Tracker front-end ASICs will be able to correlate hits from charged particles in these two sensors to perform on-module discrimination of transverse momenta pTp_\mathrm{T}. The pTp_\mathrm{T} information is generated at a frequency of 40 MHz and will be used in the Level-1 trigger decision of CMS. Prototypes of the so-called 2S modules were tested at the Test Beam Facility at DESY Hamburg between 2019 and 2020. These modules use the final front-end ASIC, the CMS Binary Chip (CBC), and for the first time the Concentrator Integrated Circuit (CIC), optical readout and on-module power conversion. In total, seven modules were tested, one of which was assembled with sensors irradiated with protons. An important aspect was to show that it is possible to read out modules synchronously. A cluster hit efficiency of about 99.75% was achieved for all modules. The CBC pTp_\mathrm{T} discrimination mechanism has been verified to work together with the CIC and optical readout. The measured module performance meets the requirements for operation in the upgraded CMS tracking detector

    Beam test performance of a prototype module with Short Strip ASICs for the CMS HL-LHC tracker upgrade

    No full text
    International audienceThe Short Strip ASIC (SSA) is one of the four front-endchips designed for the upgrade of the CMS Outer Tracker for the HighLuminosity LHC. Together with the Macro-Pixel ASIC (MPA) it willinstrument modules containing a strip and a macro-pixel sensorstacked on top of each other. The SSA provides both full readout ofthe strip hit information when triggered, and, together with theMPA, correlated clusters called stubs from the two sensors for useby the CMS Level-1 (L1) trigger system. Results from the firstprototype module consisting of a sensor and two SSA chips arepresented. The prototype module has been characterized at theFermilab Test Beam Facility using a 120 GeV proton beam

    Evaluation of HPK n+n^+-pp planar pixel sensors for the CMS Phase-2 upgrade

    No full text
    International audienceTo cope with the challenging environment of the planned high luminosity upgrade of the Large Hadron Collider (HL-LHC), sched-uled to start operation in 2029, CMS will replace its entire tracking system. The requirements for the tracker are largely determinedby the long operation time of 10 years with an instantaneous peak luminosity of up to 7.5 × 1034 cm−2 s−1 in the ultimate perfor-mance scenario. Depending on the radial distance from the interaction point, the silicon sensors will receive a particle fluencecorresponding to a non-ionizing energy loss of up to Ίeq = 3.5 × 1016 cm−2. This paper focuses on planar pixel sensor design andqualification up to a fluence of Ίeq = 1.4 × 1016 cm−2.For the development of appropriate planar pixel sensors an R&D program was initiated, which includes n+-p sensors on 150 mm(6”) wafers with an active thickness of 150 ÎŒm with pixel sizes of 100 × 25 ÎŒm2 and 50 × 50 ÎŒm2 manufactured by Hamamatsu.Single chip modules with ROC4Sens and RD53A readout chips were made. Irradiation with protons and neutrons, as well was anextensive test beam campaign at DESY were carried out. This paper presents the investigation of various assemblies mainly withROC4Sens readout chips. It demonstrates that multiple designs fulfill the requirements in terms of breakdown voltage, leakagecurrent and efficiency. The single point resolution for 50 × 50 ÎŒm2 pixels is measured as 4.0 ÎŒm for non-irradiated samples, and6.3 ÎŒm after irradiation to Ίeq = 7.2 × 1015 cm−2

    Observation of triple J/ψ meson production in proton-proton collisions

    No full text
    Protons consist of three valence quarks, two up-quarks and one down-quark, held together by gluons and a sea of quark-antiquark pairs. Collectively, quarks and gluons are referred to as partons. In a proton-proton collision, typically only one parton of each proton undergoes a hard scattering – referred to as single-parton scattering – leaving the remainder of each proton only slightly disturbed. Here, we report the study of double- and triple-parton scatterings through the simultaneous production of three J/ψ mesons, which consist of a charm quark-antiquark pair, in proton-proton collisions recorded with the CMS experiment at the Large Hadron Collider. We observed this process – reconstructed through the decays of J/ψ mesons into pairs of oppositely charged muons – with a statistical significance above five standard deviations. We measured the inclusive fiducial cross-section to be 272−104+141(stat)±17(syst)fb, and compared it to theoretical expectations for triple-J/ψ meson production in single-, double- and triple-parton scattering scenarios. Assuming factorization of multiple hard-scattering probabilities in terms of single-parton scattering cross-sections, double- and triple-parton scattering are the dominant contributions for the measured process

    Constraints on anomalous Higgs boson couplings to vector bosons and fermions from the production of Higgs bosons using the <math display="inline"><mi>τ</mi><mi>τ</mi></math> final state

    No full text
    International audienceA study of anomalous couplings of the Higgs boson to vector bosons and fermions is presented. The data were recorded by the CMS experiment at a center-of-mass energy of pp collisions at the LHC of 13 TeV and correspond to an integrated luminosity of 138  fb-1. The study uses Higgs boson candidates produced mainly in gluon fusion or electroweak vector boson fusion at the LHC that subsequently decay to a pair of τ leptons. Matrix-element and machine-learning techniques were employed in a search for anomalous interactions. The results are combined with those from the four-lepton and two-photon decay channels to yield the most stringent constraints on anomalous Higgs boson couplings to date. The pure CP-odd scenario of the Higgs boson coupling to gluons is excluded at 2.4 standard deviations. The results are consistent with the standard model predictions

    Measurement of the ttÂŻ charge asymmetry in events with highly Lorentz-boosted top quarks in pp collisions at s=13 TeV

    No full text
    The measurement of the charge asymmetry in top quark pair events with highly Lorentz-boosted top quarks decaying to a single lepton and jets is presented. The analysis is performed using proton-proton collisions at s=13TeV with the CMS detector at the LHC and corresponding to an integrated luminosity of 138 fb−1. The selection is optimized for top quarks produced with large Lorentz boosts, resulting in nonisolated leptons and overlapping jets. The top quark charge asymmetry is measured for events with a tt¯ invariant mass larger than 750 GeV and corrected for detector and acceptance effects using a binned maximum likelihood fit. The measured top quark charge asymmetry of (0.42−0.69+0.64)% is in good agreement with the standard model prediction at next-to-next-to-leading order in quantum chromodynamic perturbation theory with next-to-leading-order electroweak corrections. The result is also presented for two invariant mass ranges, 750–900 and >900GeV
    corecore