9 research outputs found

    Persistence of maternal antibodies to influenza A virus among captive mallards (\u3ci\u3eAnas platyrhynchos\u3c/i\u3e)

    Get PDF
    Wild waterfowl are maintenance hosts of most influenza A virus (IAV) subtypes and are often the subjects of IAV surveillance and transmission models. While maternal antibodies have been detected in yolks and in nestlings for a variety of wild bird species and pathogens, the persistence of maternal antibodies to IAVs in mallard ducklings (Anas platyrhynchos) has not been previously investigated. Nonetheless, this information is important for a full understanding of IAV transmission dynamics because ducklings protected by maternal antibodies may not be susceptible to infection. In this study, we examined the transfer of IAV-specific maternal antibodies to ducklings. Blood samples were collected approximately every five days from ducklings hatched from hens previously infected with an H6 strain of IAV. Serum samples were tested for antibodies to IAV by an enzyme-linked immunosorbent assay. The median persistence of maternal antibodies in ducklings was 12.5 days (range: 4-33 days) post-hatch. The majority of ducklings (71%) had detectable maternal antibodies from 4 to 17 days post-hatch, while a small subset of individuals (29%) had detectable maternal antibodies for up to 21-33 days post-hatch. Antibody concentrations in hens near the time of egg laying were correlated with maternal antibody concentrations in the initial blood sample collected from ducklings (0-4 days post-hatch). Knowledge of the duration of maternal antibodies in ducklings will aid in the interpretation of IAV serological surveillance results and in the modeling of IAV transmission dynamics in waterfowl

    Persistence of maternal antibodies to influenza A virus among captive mallards (\u3ci\u3eAnas platyrhynchos\u3c/i\u3e)

    Get PDF
    Wild waterfowl are maintenance hosts of most influenza A virus (IAV) subtypes and are often the subjects of IAV surveillance and transmission models. While maternal antibodies have been detected in yolks and in nestlings for a variety of wild bird species and pathogens, the persistence of maternal antibodies to IAVs in mallard ducklings (Anas platyrhynchos) has not been previously investigated. Nonetheless, this information is important for a full understanding of IAV transmission dynamics because ducklings protected by maternal antibodies may not be susceptible to infection. In this study, we examined the transfer of IAV-specific maternal antibodies to ducklings. Blood samples were collected approximately every five days from ducklings hatched from hens previously infected with an H6 strain of IAV. Serum samples were tested for antibodies to IAV by an enzyme-linked immunosorbent assay. The median persistence of maternal antibodies in ducklings was 12.5 days (range: 4-33 days) post-hatch. The majority of ducklings (71%) had detectable maternal antibodies from 4 to 17 days post-hatch, while a small subset of individuals (29%) had detectable maternal antibodies for up to 21-33 days post-hatch. Antibody concentrations in hens near the time of egg laying were correlated with maternal antibody concentrations in the initial blood sample collected from ducklings (0-4 days post-hatch). Knowledge of the duration of maternal antibodies in ducklings will aid in the interpretation of IAV serological surveillance results and in the modeling of IAV transmission dynamics in waterfowl

    Influences of donor and host age on human muscle-derived stem cell-mediated bone regeneration

    No full text
    Abstract Background Human muscle-derived stem cells (hMDSCs) have been shown to regenerate bone efficiently when they were transduced with Lenti-viral bone morphogenetic protein 2 (LBMP2). However, whether the age of hMDSCs and the animal host affect the bone regeneration capacity of hMDSCs and mechanism are unknown which prompted the current study. Methods We isolated three gender-matched young and old populations of skeletal muscle stem cells, and tested the influence of cells’ age on in vitro osteogenic differentiation using pellet culture before and after Lenti-BMP2/green fluorescent protein (GFP) transduction. We further investigated effects of the age of hMDSCs and animal host on hMDSC-mediated bone regeneration in a critical-size calvarial bone defect model in vivo. Micro-computer tomography (CT), histology, and immunohistochemistry were used to evaluate osteogenic differentiation and mineralization in vitro and bone regeneration in vivo. Western blot, quantitative polymerase chain reaction (PCR), and oxidative stress assay were performed to detect the effects of age of hMDSCs on cell survival and osteogenic-related genes. Serum insulin-like growth factor 1 (IGF1) and receptor activator of nuclear factor-kappa B ligand (RANKL) were measured with an enzyme-linked immunosorbent assay (ELISA). Results We found LBMP2/GFP transduction significantly enhanced osteogenic differentiation of hMDSCs in vitro, regardless of donor age. We also found old were as efficient as young LBMP2/GFP-transduced hMDSCs for regenerating functional bone in young and old mice. These findings correlated with lower phosphorylated p38MAPK expression and similar expression levels of cell survival genes and osteogenic-related genes in old hMDSCs relative to young hMDSCs. Old cells exhibited equivalent resistance to oxidative stress. However, both young and old donor cells regenerated less bone in old than young hosts. Impaired bone regeneration in older hosts was associated with high bone remodeling due to higher serum levels of RANKL and lower level of IGF-1. Conclusion hMDSC-mediated bone regeneration was not impaired by donor age when hMDSCs were transduced with LBMP2/GFP, but the age of the host adversely affected hMDSC-mediated bone regeneration. Regardless of donor and host age, hMDSCs formed functional bone, suggesting a promising cell resource for bone regeneration

    Altered time course of amygdala activation during speech anticipation in social anxiety disorder

    No full text
    BACKGROUND: Exaggerated anticipatory anxiety is common in social anxiety disorder (SAD). Neuroimaging studies have revealed altered neural activity in response to social stimuli in SAD, but fewer studies have examined neural activity during anticipation of feared social stimuli in SAD. The current study examined the time course and magnitude of activity in threat processing brain regions during speech anticipation in socially anxious individuals and healthy controls (HC). METHOD: Participants (SAD n = 58; HC n = 16) underwent functional magnetic resonance imaging (fMRI) during which they completed a 90s control anticipation task and 90s speech anticipation task. Repeated measures multi-level modeling analyses were used to examine group differences in time course activity during speech vs. control anticipation for regions of interest, including bilateral amygdala, insula, ventral striatum, and dorsal anterior cingulate cortex. RESULTS: The time course of amygdala activity was more prolonged and less variable throughout speech anticipation in SAD participants compared to HCs, whereas the overall magnitude of amygdala response did not differ between groups. Magnitude and time course of activity was largely similar between groups across other regions of interest. LIMITATIONS: Analyses were restricted to regions of interest and task order was the same across participants due to the nature of deception instructions. CONCLUSIONS: Sustained amygdala time course during anticipation may uniquely reflect heightened detection of threat or deficits in emotion regulation in socially anxious individuals. Findings highlight the importance of examining temporal dynamics of amygdala responding
    corecore