32 research outputs found

    Environmental parameters of shallow water habitats in the SW Baltic Sea

    Get PDF
    The coastal waters of the Baltic Sea are subject to high variations in environmental conditions, triggered by natural and anthropogenic causes. Thus, in situ measurements of water parameters can be strategic for our understanding of the dynamics in shallow water habitats. In this study we present the results of a monitoring program at low water depths (1–2.5 m), covering 13 stations along the Baltic coast of Schleswig-Holstein, Germany. The provided dataset consists of records for dissolved inorganic nutrient concentrations taken twice a month and continuous readings at 10 min intervals for temperature, salinity and oxygen content. Data underwent quality control procedures and were flagged. On average, a data availability of >90 % was reached for the monitoring period within 2016–2018. The obtained monitoring data reveal great temporal and spatial variabilities of key environmental factors for shallow water habitats in the southwestern Baltic Sea. Therefore the presented information could serve as realistic key data for experimental manipulations of environmental parameters as well as for the development of oceanographic, biogeochemical or ecological models

    Factors controlling plankton community production, export flux, and particulate matter stoichiometry in the coastal upwelling system off Peru

    Get PDF
    Eastern boundary upwelling systems (EBUS) are among the most productive marine ecosystems on Earth. The production of organic material is fueled by upwelling of nutrient-rich deep waters and high incident light at the sea surface. However, biotic and abiotic factors can modify surface production and related biogeochemical processes. Determining these factors is important because EBUS are considered hotspots of climate change, and reliable predictions of their future functioning requires understanding of the mechanisms driving the biogeochemical cycles therein. In this field experiment, we used in situ mesocosms as tools to improve our mechanistic understanding of processes controlling organic matter cycling in the coastal Peruvian upwelling system. Eight mesocosms, each with a volume of ∼55 m3, were deployed for 50 d ∼6 km off Callao (12∘ S) during austral summer 2017, coinciding with a coastal El Niño phase. After mesocosm deployment, we collected subsurface waters at two different locations in the regional oxygen minimum zone (OMZ) and injected these into four mesocosms (mixing ratio ≈1.5 : 1 mesocosm: OMZ water). The focus of this paper is on temporal developments of organic matter production, export, and stoichiometry in the individual mesocosms. The mesocosm phytoplankton communities were initially dominated by diatoms but shifted towards a pronounced dominance of the mixotrophic dinoflagellate (Akashiwo sanguinea) when inorganic nitrogen was exhausted in surface layers. The community shift coincided with a short-term increase in production during the A. sanguinea bloom, which left a pronounced imprint on organic matter C : N : P stoichiometry. However, C, N, and P export fluxes did not increase because A. sanguinea persisted in the water column and did not sink out during the experiment. Accordingly, export fluxes during the study were decoupled from surface production and sustained by the remaining plankton community. Overall, biogeochemical pools and fluxes were surprisingly constant for most of the experiment. We explain this constancy by light limitation through self-shading by phytoplankton and by inorganic nitrogen limitation which constrained phytoplankton growth. Thus, gain and loss processes remained balanced and there were few opportunities for blooms, which represents an event where the system becomes unbalanced. Overall, our mesocosm study revealed some key links between ecological and biogeochemical processes for one of the most economically important regions in the oceans

    Marine Strategy Framework Directive - Descriptor 2, Non-Indigenous Species, Delivering solid recommendations for setting threshold values for non-indigenous species pressure on European seas

    Get PDF
    Marine Non-Indigenous Species (NIS) are animals and plants introduced accidently or deliberately into the European seas, originating from other seas of the globe. About 800 marine non-indigenous species (NIS) currently occur in the European Union national marine waters, several of which have negative impacts on marine ecosystem services and biodiversity. Under the Marine Strategy Framework Directive (MSFD) Descriptor 2 (D2), EU Member States (MSs) need to consider NIS in their marine management strategies. The Descriptor D2 includes one primary criterion (D2C1: new NIS introductions), and two secondary criteria (D2C2 and D2C3). The D2 implementation is characterized by a number of issues and uncertainties which can be applicable to the Descriptor level (e.g. geographical unit of assessment, assessment period, phytoplanktonic, parasitic, oligohaline NIS, etc.), to the primary criterion D2C1 level (e.g. threshold values, cryptogenic, questionable species, etc), and to the secondary criteria D2C2 and D2C3. The current report tackles these issues and provides practical recommendations aiming at a smoother and more efficient implementation of D2 and its criteria at EU level. They constitute a solid operational output which can result in more comparable D2 assessments among MSs and MSFD regions/subregions. When it comes to the policy-side, the current report calls for a number of different categories of NIS to be reported in D2 assessments, pointing the need for the species to be labelled/categorised appropriately in the MSFD reporting by the MSs. These suggestions are proposed to be communicated to the MSFD Working Group of Good Environmental Status (GES) and subsequently to the Marine Strategy Coordination Group (MSCG) of MSFD. Moreover, they can serve as an input for revising the Art. 8 Guidelines

    Neobiota-Standard; Zwischenberich November 2015

    No full text

    Aufnahme der Flachwasserabiotik in Schleswig-Holstein; Zwischenbericht November 2015

    No full text

    Neobiota in schleswig-holsteinischen Häfen; Abschlussbericht April 2015

    No full text
    corecore