176 research outputs found

    Morphology of the canine omentum, part 1: arterial landmarks that define the omentum

    Get PDF
    Although the omentum remains an enigmatic organ, research during the last decades has revealed its fascinating functions including fat storage, fluid drainage, immune activity, angiogenesis and adhesion. While clinicians both in human and veterinary medicine are continuously exploring new potential omental applications, detailed anatomical data on the canine omentum are currently lacking, and information is often retrieved from human medicine. In this study, the topographic anatomy of the canine greater and lesser omentum is explored in depth. Current nomenclature is challenged, and a more detailed terminology is proposed. Consistent arteries that are contained within folds of the superficial omental wall are documented, described and named, as they can provide the anatomical landmarks that are necessary for unambiguous scientific communication on the canine omentum. In an included dissection video, the conclusions and in situ findings described in this study are demonstrated

    The Anti-Inflammatory and Antibacterial Basis of Human Omental Defense: Selective Expression of Cytokines and Antimicrobial Peptides

    Get PDF
    BACKGROUND: The wound healing properties of the human omentum are well known and have extensively been exploited clinically. However, the underlying mechanisms of these effects are not well understood. We hypothesize that the omentum tissue promotes wound healing via modulation of anti-inflammatory pathways, and because the omentum is rich in adipocytes, the adipocytes may modulate the anti-inflammatory response. Factors released by human omentum may affect healing, inflammation and immune defense. METHODOLOGY: Six human omentum tissues (non obese, free from malignancy, and any other systemic disorder) were obtained during diagnostic laparoscopies having a negative outcome. Healthy oral mucosa (obtained from routine oral biopsies) was used as control. Cultured adipocytes derived from human omentum were exposed to lipopolysaccharide (LPS) (1-50 ng/mL) for 12-72 hours to identify the non-cytotoxic doses. Levels of expression (mRNA and protein) were carried out for genes associated with pro- and anti-inflammatory cytokine responses and antibacterial/antimicrobial activity using qRT-PCR, western blotting, and cell-based ELISA assays. RESULTS: The study shows significant higher levels of expression (mRNA and protein) of several specific cytokines, and antibacterial peptides in the omentum tissues when compared to oral sub-mucosal tissues. In the validation studies, primary cultures of adipocytes, derived from human omentum were exposed to LPS (5 and 10 ng/mL) for 24 and 48 h. The altered expressions were more pronounced in cultured adipocytes cells when exposed to LPS as compared to the omentum tissue. CONCLUSIONS/SIGNIFICANCE: Perhaps, this is the first report that provides evidence of expressional changes in pro- and anti-inflammatory cytokines and antibacterial peptides in the normal human omentum tissue as well as adipocytes cultured from this tissue. The study provides new insights on the molecular and cellular mechanisms of healing and defense by the omentum, and suggests the potential applicability of cultured adipocytes derived from the omentum for future therapeutic applications

    Cellular Basis of Tissue Regeneration by Omentum

    Get PDF
    The omentum is a sheet-like tissue attached to the greater curvature of the stomach and contains secondary lymphoid organs called milky spots. The omentum has been used for its healing potential for over 100 years by transposing the omental pedicle to injured organs (omental transposition), but the mechanism by which omentum helps the healing process of damaged tissues is not well understood. Omental transposition promotes expansion of pancreatic islets, hepatocytes, embryonic kidney, and neurons. Omental cells (OCs) can be activated by foreign bodies in vivo. Once activated, they become a rich source for growth factors and express pluripotent stem cell markers. Moreover, OCs become engrafted in injured tissues suggesting that they might function as stem cells

    Chirurgische Therapie bei der sogenannten Spontanruptur der SpeiserΓΆhre (Boerhaave-Syndrom)

    No full text
    • …
    corecore