56 research outputs found

    Integral cycle bases for cyclic timetabling

    Get PDF
    AbstractCyclic railway timetables are typically modeled by a constraint graph G with a cycle period time T, in which a periodic tension x in G corresponds to a cyclic timetable. In this model, the periodic character of the tension x is guaranteed by requiring periodicity for each cycle in a strictly fundamental cycle basis, that is, the set of cycles generated by the chords of a spanning tree of G.We introduce the more general concept of integral cycle bases for characterizing periodic tensions. We characterize integral cycle bases using the determinant of a cycle basis, and investigate further properties of integral cycle bases.The periodicity of a single cycle is modeled by a so-called cycle integer variable. We exploit the wider class of integral cycle bases to find tighter bounds for these cycle integer variables, and provide various examples with tighter bounds. For cyclic railway timetabling in particular, we consider Minimum Cycle Bases for constructing integral cycle bases with tight bounds

    The Second Chvatal Closure Can Yield Better Railway Timetables

    Get PDF
    We investigate the polyhedral structure of the Periodic Event Scheduling Problem (PESP), which is commonly used in periodic railway timetable optimization. This is the first investigation of Chvatal closures and of the Chvatal rank of PESP instances. In most detail, we first provide a PESP instance on only two events, whose Chvatal rank is very large. Second, we identify an instance for which we prove that it is feasible over the first Chvatal closure, and also feasible for another prominent class of known valid inequalities, which we reveal to live in much larger Chvatal closures. In contrast, this instance turns out to be infeasible already over the second Chvatal closure. We obtain the latter result by introducing new valid inequalities for the PESP, the multi-circuit cuts. In the past, for other classes of valid inequalities for the PESP, it had been observed that these do not have any effect in practical computations. In contrast, the new multi-circuit cuts that we are introducing here indeed show some effect in the computations that we perform on several real-world instances - a positive effect, in most of the cases

    Determining All Integer Vertices of the PESP Polytope by Flipping Arcs

    Get PDF
    We investigate polyhedral aspects of the Periodic Event Scheduling Problem (PESP), the mathematical basis for periodic timetabling problems in public transport. Flipping the orientation of arcs, we obtain a new class of valid inequalities, the flip inequalities, comprising both the known cycle and change-cycle inequalities. For a point of the LP relaxation, a violated flip inequality can be found in pseudo-polynomial time, and even in linear time for a spanning tree solution. Our main result is that the integer vertices of the polytope described by the flip inequalities are exactly the vertices of the PESP polytope, i.e., the convex hull of all feasible periodic slacks with corresponding modulo parameters. Moreover, we show that this flip polytope equals the PESP polytope in some special cases. On the computational side, we devise several heuristic approaches concerning the separation of cutting planes from flip inequalities. We finally present better dual bounds for the smallest and largest instance of the benchmarking library PESPlib

    Symmetry for Periodic Railway Timetables

    Get PDF
    Periodic timetabling for railway networks is usually modeled by the Periodic Event Scheduling Problem (PESP). This model permits to express many requirements that practitioners impose on periodic railway timetables. We discuss a requirement practitioners are asking for, but which, so far, has not been the topic of mathematical studies: the concept of symmetry

    Integrating Line Planning for Construction Sites into Periodic Timetabling via Track Choice

    Get PDF
    We consider maintenance sites for urban rail systems, where unavailable tracks typically require changes to the regular timetable, and often even to the line plan. In this paper, we present an integrated mixed-integer linear optimization model to compute an optimal line plan that makes best use of the available tracks, together with a periodic timetable, including its detailed routing on the tracks within the stations. The key component is a flexible, turn-sensitive event-activity network that allows to integrate line planning and train routing using a track choice extension of the Periodic Event Scheduling Problem (PESP). Major goals are to maintain as much of the regular service as possible, and to keep the necessary changes rather local. Moreover, we present computational results on real construction site scenarios on the S-Bahn Berlin network. We demonstrate that this integrated problem is indeed solvable on practically relevant instances

    A Cut-based Heuristic to Produce Almost Feasible Periodic Railway Timetables

    Get PDF
    We consider the problem of satisfying the maximum number of constraints of an instance of the Periodic Event Scheduling Problem (PESP). This is a key issue in periodic railway timetable construction, and has many other applications, e.g. for traffic light scheduling

    A Simple Way to Compute the Number of Vehicles That Are Required to Operate a Periodic Timetable

    Get PDF
    We consider the following planning problem in public transportation: Given a periodic timetable, how many vehicles are required to operate it? In [Julius Paetzold et al., 2017], for this sequential approach, it is proposed to first expand the periodic timetable over time, and then answer the above question by solving a flow-based aperiodic optimization problem. In this contribution we propose to keep the compact periodic representation of the timetable and simply solve a particular perfect matching problem. For practical networks, it is very much likely that the matching problem decomposes into several connected components. Our key observation is that there is no need to change any turnaround decision for the vehicles of a line during the day, as long as the timetable stays exactly the same

    Classes of Cycle Bases

    Get PDF
    In the last years, new variants of the minimum cycle basis (MCB) problem and new classes of cycle basis have been introduced, as motivated by several applications from disparate areas of scientific and technological inquiries. At present, the complexity status of the MCB problem has been settled only for undirected, directed, and strictly fundamental cycle basis

    The second Chvátal closure can yield better railway timetables

    Get PDF
    We investigate the polyhedral structure of the Periodic Event Scheduling Problem (PESP), which is commonly used in periodic railway timetable optimization. This is the first investigation of Chvatal closures and of the Chvatal rank of PESP instances. In most detail, we first provide a PESP instance on only two events, whose Chvatal rank is very large. Second, we identify an instance for which we prove that it is feasible over the first Chvatal closure, and also feasible for another known prominent class of known valid inequalities, which we reveal to live in much larger Chvatal closures. In contrast, this instance turns out to be infeasible already over the second Chvatal closure. We obtain the latter result by introducing new valid inequalities for the PESP, the multi-circuit cuts. In the past, for other classes of valid inequalities for the PESP, it had been observed that these do not have any effect in practical computations. In contrast, the new multi-circuit cuts that we are introducing here, indeed show some effect in the computations that we perform on several real-world instances - a positive effect, in most of the cases

    An Improved Algorithm for the Periodic Timetabling Problem

    Get PDF
    We consider the computation of periodic timetables, which is a key task in the service design process of public transportation companies. We propose a new approach for solving the periodic timetable optimisation problem. It consists of a (partially) heuristic network aggregation to reduce the problem size and make it accessible to standard mixed-integer programming (MIP) solvers. We alternate the invocation of a MIP solver with the well-known problem specific modulo network simplex heuristic (ModSim). This iterative approach helps the ModSim-method to overcome local minima efficiently, and provides the MIP solver with better initial solutions. Our computational experiments are based on the 16 railway instances of the PESPlib, which is the only currently available collection of periodic event scheduling problem instances. For each of these instances, we are able to reduce the objective values of previously best known solutions by at least 10.0%, and up to 22.8% with our iterative combined method
    • …
    corecore