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Abstract
We investigate polyhedral aspects of the Periodic Event Scheduling Problem (PESP), the mathemat-
ical basis for periodic timetabling problems in public transport. Flipping the orientation of arcs, we
obtain a new class of valid inequalities, the flip inequalities, comprising both the known cycle and
change-cycle inequalities. For a point of the LP relaxation, a violated flip inequality can be found in
pseudo-polynomial time, and even in linear time for a spanning tree solution. Our main result is
that the integer vertices of the polytope described by the flip inequalities are exactly the vertices of
the PESP polytope, i.e., the convex hull of all feasible periodic slacks with corresponding modulo
parameters. Moreover, we show that this flip polytope equals the PESP polytope in some special
cases. On the computational side, we devise several heuristic approaches concerning the separation
of cutting planes from flip inequalities. We finally present better dual bounds for the smallest and
largest instance of the benchmarking library PESPlib.
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1 Introduction

Whenever certain processes to be planned shall repeat after a fixed amount of time, periodic
plans (or cyclic plans) are sought. Such periodically repeating processes appear in particular in
timetables for many public transportation networks, including railway systems, in Europe [4],
where period times of 10 minutes or one hour can be observed regularly. One further example
is the planning of traffic light signals in street networks. These often follow a periodic pattern,
where the period time sometimes is 60 or 90 seconds [8, 27].

In a sense, a better understanding of mathematical models for periodic networks potentially
could reduce emissions of the traffic and transportation sector: First, better timetables for
public transport that require less transfer or waiting times make public transport more
attractive and could thus reduce car traffic. Second, the better systems of traffic lights in
networks are coordinated, the less red light stops – and thus less emissions from accelerating
and decelerating – are necessary.

Since the work by Serafini and Ukovich [26], planning for periodic networks is mainly
done with the periodic event scheduling problem (PESP) as graph-based mathematical model.
This has attracted much research, presumably also because it turns out to be somehow
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challenging: One relatively small, but also relatively difficult PESP-based instance has been
included into the MIPLIB 2003 [1]. In a more recent collection dedicated exclusively to PESP
instances, PESPlib, since 2012 for none of the 20 instances any solution could be proven to
be optimal [6].

In order to come up with provably optimal solutions, the well-known branch-and-bound
procedure (including its variants such as branch-and-cut) is the only technique that can be
applied practically to this purpose. This procedure is based on primal feasible solutions on
the one hand, and dual bounds – in the case of a minimization problem, lower bounds – on
the other hand. In Fig. 1, we provide an evolution of the values of primal feasible solutions
and lower bounds over time, which is typical when solving PESP instances: The dual bounds
stay much longer significantly far away from the actual optimal solution value than the
primal solutions. Similar observations can be found in [15]. This behavior is also mirrored
by the facts that the LP relaxation of a PESP instance always has a trivial solution, and
that PESP generalizes the notoriously hard graph vertex coloring problem [23], including
certain results concerning inapproximability [12], and parameterized complexity [19].
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Figure 1 Typical bound evolution when solving a PESP instance by MIP methods (here: CPLEX
12.10 [9] with default settings). The time axis is logarithmic. On this instance, the primal bound
stops moving after 10 seconds (x-axis value 1.0, i.e., 101.0 = 10 seconds), but proving optimality
takes 30 minutes.

Hence, in order to really solve PESP instances, much better dual bounds are necessary.
From the early years of the active work with PESP, some well-known classes of valid
inequalities have been identified: the so-called cycle inequalities due to Odijk [23] as well as
the so-called change-cycle inequalities by Nachtigall [21, 22]. Both are defined for oriented
cycles of the graph. In the absence of backward arcs in the oriented cycles, these two classes
of valid inequalities coincide [11].

In the sequel, there have been a few contributions regarding the generation of better lower
bounds during the branch-and-bound solution process for PESP instances. The node-disjoint
chain inequalities by Nachtigall [22] consider several internally vertex-disjoint paths between
a pair of vertices, and are facet-defining in some cases. T. Lindner [20] investigates chain
cutting planes, also based on multiple paths between a pair of vertices, and flow inequalities.
Liebchen and Swarat [17] inspect the second Chvátal closure and propose what they denote
multi-circuit cuts, which can be defined for structures different from simple oriented circuits.
Lindner and Liebchen [18] apply the concept of graph separators to PESP instances. Initially
motivated by generating better primal solutions, on some instances it turned out that also
better dual solutions could be obtained.
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In this paper, we revisit in particular the change-cycle inequalities. In the case of a
simple oriented circuit having k arcs, we do not just consider the two initial versions of them,
when traversing the circuit either in forward or backward direction. Rather, we consider
2k different configurations for its arcs, by simply flipping them independently from each
other in their initial or in their opposed orientation. All of them turn out to provide valid
inequalities. These flip inequalities are of course exponentially many, both because of the
number of circuits in a graph and because of the proposed arc flip operation.

Nevertheless, considering all these exemplars of the flip inequalities and adding them to
the LP relaxation PLP of the integer PESP polytope PIP yields a new polytope Pflip. We
prove that any vertex of PIP turns out to be a vertex of Pflip, too, hereby illustrating the
sharpness of these flipped change-cycle inequalities. Yet, it turns out that Pflip ends up
with further fractional vertices. For example, for an infeasible PESP instance that has been
considered in [17], we find that Pflip 6= ∅, whereas of course PIP = ∅. In contrast, for the
special case that any arc is contained in at most one cycle, it turns out that PIP = Pflip.

Given a point of the LP relaxation PLP, a violated flip inequality can be separated in
pseudo-polynomial time as a consequence of the results of [2]. However, this method is
computationally too challenging on large instances, and this is why we examine several
heuristic separation strategies for flip inequalities. These turn out to be fruitful, and we
compute better dual bounds for the smallest and largest PESPlib railway timetabling
instances.

The paper is organized as follows: After formally describing PESP and reviewing the
two common mixed integer programming formulations, we define the PESP polytope and
recall the cycle and change-cycle inequalities in Section 2. Section 3 is devoted to the
flip inequalities and their polyhedral investigation, including our main results and several
examples. Our approach to separate flip inequalities in practice is illustrated in Section 4,
before we conclude the paper in Section 5.

2 Polyhedral Basics of the Periodic Event Scheduling Problem

2.1 The Periodic Event Scheduling Problem
The Periodic Event Scheduling Problem (PESP) dates back to Serafini and Ukovich [26], and
shows certain similarities to models that were already considered by Rüger [24]. We will use
the following formalization: A PESP instance is given by a (G,T, `, u, w), where

G = (V,A) is a directed graph, called event-activity network, whose vertices are called
events and whose arcs are called activities,
T ∈ N is a period time,
` ∈ ZA≥0 is a vector of lower bounds such that 0 ≤ ` < T ,
u ∈ ZA≥0 is a vector of upper bounds, 0 ≤ u− ` < T , and
w ∈ RA≥0 is a vector of weights.

In this paper, we restrict ourselves to integer bounds ` and u. This is a common planning
assumption, in particular time input values are often scaled and/or rounded accordingly.
Furthermore, we assume that G is weakly connected. A vector π ∈ [0, T )V is a periodic
timetable if there exists a periodic tension x ∈ RA such that

` ≤ x ≤ u and ∀ a = (i, j) ∈ A : πj − πi ≡ xa mod T.

A periodic timetable π assigns times modulo T to each event in G, and fixes the duration of
each activity a = (i, j) ∈ A to πj − πi modulo T . The actual duration of a is then chosen
to lie in the interval [`a, ua]. Since 0 ≤ ua − `a < T for all a ∈ A, the periodic tension x is
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unique for a given timetable π, and can be computed by setting

xa := [πj − πi − `a]T + `a for all a = (i, j) ∈ A,

where [·]T denotes the modulo T operator with values in [0, T ). We further define the periodic
slack as y := x− ` ∈ [0, T )A.

In a public transport context, an event i is usually modeling either the arrival or the
departure of a directed traffic line at some station, e.g., the departure of the trains from
Berlin to Munich in the city of Erfurt. An arc a = (i, j) models the time duration from
event i to event j. If i and j are two subsequent departure and arrival events of the same
directed line, then a = (i, j) models the trip duration from the station of event i to the
station of event j. In turn, if i and j are the arrival and departure events of the same directed
line within the same station, then a = (i, j) models the dwell duration within this station.
To illustrate many other commercial and operational types of constraints, we refer to [13].
If in an hourly service (i.e., T = 60), for a dwell arc a = (i, j) we require that `a = 3 and
ua = 7, then of course πi = 29 and πj = 33 constitute a periodic timetable. The periodic
tension of a is xa = 4 ∈ [3, 7], and the periodic slack is ya = 1. However, notice that πi = 58
and πj = 3 constitute a periodic timetable, too, because xa = [3− 58− 3]60 + 3 = 2 + 3 = 5.

I Definition 1. Given (G,T, `, u, w) as above, the Periodic Event Scheduling Problem (PESP)
is to find a periodic timetable π with periodic slack y such that

∑
a∈A waya is minimum or

to decide that no periodic timetable exists.

2.2 Mixed Integer Programming Formulations
Let (G,T, `, u, w) be a PESP instance, G = (V,A). It follows immediately from the definitions
of periodic timetables, tensions and slacks that PESP can be written as:

Minimize
∑
a∈A

waya

s.t. πj − πi = ya + `a − Tpa, a = (i, j) ∈ A,
0 ≤ πi < T, v ∈ V,
0 ≤ ya ≤ ua − `a, a ∈ A,

pa ∈ Z, a ∈ A.

The variables pa resolve the modulo T constraints. If D ∈ {−1, 0, 1}V×A denotes the
incidence matrix of G, and Dt is its transpose, then the PESP constraints can be summarized
as Dtπ − y = ` − Tp. Since the matrix (Dt | −I) is totally unimodular, it follows that if
the problem is feasible, then there is an optimal integral periodic timetable with an optimal
integral periodic slack.

Another formulation is obtained by cycle bases of G: An oriented cycle in G is a vector
γ ∈ {−1, 0, 1}A with Dγ = 0. Such a γ corresponds to an undirected, possibly non-simple
cycle in G on the arcs a with γa 6= 0, where arcs with γa = 1 are traversed forward, i.e.,
following the direction given by a, and arcs with γa = −1 are traversed backward. We will
sometimes decompose γ = γ+ − γ− into its positive and negative part, and we denote by |γ|
the length of the cycle, i.e., the number of a ∈ A with γa 6= 0. If D is seen as a linear map
of Z-modules, the kernel of D is called the cycle space of G, and its rank is the cyclomatic
number µ. An integral cycle basis of G is a collection B = {γ1, . . . , γµ} of oriented cycles
generating the cycle space of G as a Z-module. The matrix Γ with γ1, . . . , γµ as rows is
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called a cycle matrix and the kernel of Γ equals the image of Dt over Z [14]. This results in
the following cycle-based mixed-integer programming formulation for PESP:

Minimize
∑
a∈A

waya

s.t. Γ(y + `) = Tz,

0 ≤ y ≤ u− `,
y ∈ ZA,
z ∈ ZB .

(?)

By the above discussion on total unimodularity, it is no restriction to assume that y is
integral. An important subclass of integral cycle bases is given by (strictly) fundamental cycle
bases: A spanning tree S on G is a spanning tree on the graph that results from undirecting
G. The µ fundamental cycles of S give rise to simple oriented cycles in G, and these form an
integral cycle basis [16].

2.3 Periodic Timetabling Polytopes
We will base our polytopal investigations on the cycle-based integer programming formulation
(?) for PESP. Let (G,T, `, u, w) be a PESP instance. Fix a cycle matrix Γ of an integral
cycle basis B. Let further n := |V |, m := |A|, and denote by µ = m− n+ 1 the cyclomatic
number of G.

I Definition 2. Define

PLP := {(y, z) ∈ RA × RB | Γ(y + `) = Tz, 0 ≤ y ≤ u− `},
PIP := conv(PLP ∩ (ZA × ZB)).

That is, PIP is the convex hull of the set of feasible solutions to the integer program (?), and
PLP is the set of feasible solutions to the linear programming relaxation of (?).

Since our further investigations will regularily touch on vertices, recall the following basic
theorem on the structure of polytopes.

I Theorem 3 ([25, Theorem 5.7]). Let P = {x | Ax ≤ b} be a polyhedron in Rr and let
x∗ ∈ P . Then x∗ is a vertex of P , if and only if the submatrix Ax∗ of the inequalities from
Ax ≤ b that are satisfied by x∗ with equality has rank r.

I Lemma 4. The vertices of PLP are given by{(
y,

Γ(y + `)
T

)
∈ RA × RB

∣∣∣∣∀a ∈ A : ya ∈ {0, ua − `a}
}
.

A proof of Lemma 4 is given in the appendix. In particular, PLP has 2m vertices. Since
the weights w are non-negative by definition, we also conclude that (y∗, z∗) = (0,Γ`/T ) is an
optimal solution to the the LP relaxation of (?).

I Definition 5. A point (y∗, z∗) ∈ PLP is called a spanning tree solution if there is a spanning
tree S of G such that y∗a = 0 or y∗a = ua − `a holds for all arcs a in S.

I Theorem 6 (see also [22, Theorem 6.1]). Let (y∗, z∗) be a vertex of PLP or PIP. Then
(y∗, z∗) is a spanning tree solution.

Proof. See appendix. J
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Note that Theorem 6 does not give a sufficient criterion for being a vertex of PIP: Not
every choice of ya ∈ {0, ua − `a} along arcs a of some spanning tree yields a vertex of PIP,
e.g., if there is no periodic timetable, then PIP = ∅, see also Example 19.

2.4 Known Inequalities
Both polyhedra PLP and PIP are polytopes, as the bounds on y imply bounds on z. For PIP,
this observation leads to the cycle inequalities:

I Lemma 7 (Cycle inequalities, [23]). Let γ be an oriented cycle and (y, z) ∈ PIP. Then⌈
γt+`− γt−u

T

⌉
≤ γt(y + `)

T
≤
⌊
γt+u− γt−`

T

⌋
.

Another type of inequalities is the following:

I Lemma 8 (Change-cycle inequalities, [21]). Let γ be an oriented cycle and (y, z) ∈ PIP.
Set α := [−γt`]T . Then

(T − α)γt+y + αγt−y ≥ α(T − α).

The change-cycle inequalities are facet-defining for α > 0 [22, Lemma 6.4].
Moreover, as mentioned in Section 1, more types of inequalities have been discovered. We

will return to the multi-circuit cuts of [17] in Example 19. In the next section, we present
a new and easy to describe class of inequalities that applies to each oriented cycle and
generalizes both cycle and change-cycle inequalities.

3 Flipping Arcs

3.1 Flip Inequalities
Consider an arc a = ij ∈ A. By flipping a, we mean the following: Replace a by an arc
a = ji in opposite direction, and set `a := [−ua]T , ua := [−ua]T + ua − `a.

I Lemma 9. A vector y ∈ RA is a feasible periodic slack for the original PESP instance if
and only if y′ defined by y′a := ua − `a − ya and agreeing with y for all other arcs in A \ {a}
is a feasible periodic slack for the PESP instance in which the arc a is just flipped.

Proof. It is clear that 0 ≤ y ≤ u − ` implies 0 ≤ y′ ≤ u − ` and vice versa. Let π be a
periodic timetable for the original PESP instance. Then, from πj − πi ≡ ya + `a mod T ,

πi − πj ≡ −(ya + `a) ≡ y′a − ua ≡ y′a + [−ua]T mod T,

so that π is also a feasible periodic timetable for the flipped instance, and conversely. J

Applying the change-cycle inequality (Lemma 8) on the PESP instance obtained by flipping
a subset of arcs, and re-interpreting it in the initial instance yields the flip inequalities:

I Corollary 10. Let F ⊆ A and let γ be an oriented cycle. Then the flip inequality

(T − αF )
∑

a∈A\F :
γa=1

ya + αF
∑

a∈A\F :
γa=−1

ya

+ αF
∑
a∈F :
γa=1

(ua − `a − ya) + (T − αF )
∑
a∈F :
γa=−1

(ua − `a − ya) ≥ αF (T − αF )
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is valid for all (y, z) ∈ PIP, where

αF :=

− ∑
a∈A\F

γa`a −
∑
a∈F

γaua


T

.

Flipping all arcs in F we obtain an oriented cycle γF , and the flip inequality for γ is the
change-cycle inequality for γF in the flipped instance. Figure 2 illustrates this flip operation
showing which bounds of which arcs are considered in the respective flip inequality.
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Figure 2 Left: Coefficient of yai (top) and contribution to α (bottom) in the original change-cycle
inequality for the depicted oriented cycle. Middle: Coefficient of y′

ai
and contribution to α′ in the

original change-cycle inequality in the instance obtained by flipping F = {a3, a5}, with adjusted
lower bounds `′ and upper bounds u′. Right: Coefficient of yai and contribution to αF in the flip
inequality for F = {a3, a5} on the original instance. In particular, you can see that lower bounds `
and upper bounds u can enter the computation of α with arbitrary signs.

Notice that given an oriented cycle γ, initially there had been defined one change-cycle
inequality making exclusively use of all the lower bounds of its arcs. Much similarly, consid-
ering the upper bounds of its arcs had been considered, too [10]. In contrast, Corollary 10
provides us with not less than up to 2|γ| valid inequalities.

It is easy to see that the (lower bound) cycle inequality and the change-cycle inequality
are equivalent for an oriented cycle with no backward arcs [11]. In general, we have:

I Lemma 11. Let γ be an oriented cycle. Then the cycle inequalities for γ are equivalent to
the flip inequalities when flipping all backward resp. forward arcs in γ.

Lemma 11 is proved in the appendix. The flip inequalities hence contain both cycle and
change-cycle inequalities as special cases. The inequalities with αF > 0 are facet-defining for
PIP by the same proof [22, Lemma 6.4] that works for change-cycle inequalities.

3.2 The Flip Polytope
I Definition 12. The flip polytope is defined as

Pflip := {(y, z) ∈ PLP | y satisfies the flip inequality for all F ⊆ A and oriented cycles γ}.

By Corollary 10, we clearly have PIP ⊆ Pflip ⊆ PLP.

I Theorem 13. Let (y, z) ∈ PLP \ PIP be a fractional spanning tree solution. Then (y, z) /∈
Pflip, and any such (y, z) is separated from Pflip by at least one of 2µ flip inequalities.
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Proof. Let (y, z) ∈ PLP, and let S ⊆ A be the set of arcs of a spanning tree such that for
all a ∈ S holds ya ∈ {0, ua − `a}. We will show that if y satisfies a particular set of 2µ flip
inequalities, then (y, z) already turns out to be integer.

Consider any co-tree arc, say a′ /∈ S, with fundamental cycle γ, assuming w.l.o.g.
that γa′ = 1. Suppose that (y, z) satisfies the flip inequalities for γ and the subsets
F1 := {a ∈ S | ya = ua − `a}, F2 := F1 ∪ {a′}. Then, because of zero slack of the resulting
y-variables (occasionally flipped), the contribution of the arcs in S is 0 in both flip inequalities,
so that only

(T − αF1)ya′ ≥ αF1(T − αF1) and αF2(ua′ − `a′ − ya′) ≥ αF2(T − αF2)

remain. Recall from Lemma 8 that in general 0 ≤ α < T , and now suppose that αF2 > 0.
Then, together with αF1 < T ,

0 ≤ αF1 ≤ ya′ ≤ ua′ − `a′ − T + αF2 < T.

By the definition of F1 and F2, ua′ − `a′ − T + αF2 ≡ αF1 mod T and ya′ ∈ [0, T ), and we
conclude that ya′ = αF1 . By definition of αF1 ,

γt(y + `) =
∑
a∈S
ya=0

γa`a +
∑
a∈S

ya=ua−`a

γaua + ya′ + `a′ ≡ 0 mod T.

In the case αF2 = 0, it holds that ya′ ≥ αF1 = ua′ − `a′ , so that again ya′ = αF1 and
γt(y + `) ≡ 0 mod T .

We conclude that for all µ fundamental cycles γ of S, γt(y + `) is an integer multiple
of T . As these cycles form an integral cycle basis, we find that z is integer, and hence
(y, z) ∈ PIP. J

Theorem 13 provides a linear-time separation procedure for spanning tree solutions. In
general, there is a pseudo-polynomial time separation algorithm:

I Theorem 14. There is an O(T 2n2m) algorithm that given (y, z) ∈ PLP finds a flip
inequality violated by (y, z) or decides that none exists.

Proof. Construct a network G′ as follows: Remove each arc a = ij ∈ A and insert instead
four arcs isa, sata, tasa, taj, where sa, ta are new vertices. The arc sata receives the bounds
of a, while tasa obtains the bounds of the flipped arc a as in the beginning of this section.
The other two arcs have lower and upper bound 0.

In this network G′, any oriented cycle γ′ either consists only of sata and tasa for some
a ∈ A, or it uses at most one of sata and tasa. In the latter case, γ′ corresponds to a pair
(γ, F ), where γ is an oriented cycle in G and F consists of the arcs in G where γ′ uses tasa.
Moreover, the change-cycle inequality for γ′ in G′ is equivalent to the flip inequality for γ in
G w.r.t. F . On the other hand, the change-cycle inequality for a cycle γ′ on the arcs sata
and tasa is satisfied for any y: Assuming that both arcs are forward, we have that

(T − α)ya + (T − α)(ua − `a − ya) = (T − α)(ua − `a) = α(T − α), as α = ua − `a.

The analogous result holds when both arcs in γ′ are backward. As a consequence, we can
find violated flip inequalities in G by separating change-cycle inequalities in G′, which can
be done in O(T 2n2m) time [2, Theorem 10]. J

The complexity of the separation problem remains open, a few partial NP-completeness
results are known for cycle and change-cycle inequalities [2].

We present now an astonishing result on the relation between Pflip and PIP:
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I Theorem 15. The vertices of PIP are precisely the integer vertices of Pflip.

Proof. It is clear that any integer vertex of Pflip is a vertex of PIP. Now, let (y∗, z∗) be a
vertex of PIP. In view of Theorem 3, we need to identify m+ µ linearly independent defining
inequalities of Pflip that are satisfied with equality for (y∗, z∗), and we are doing so in three
sets:

Tree arcs (n− 1 inequalities):
By Theorem 6, (y∗, z∗) is a spanning tree solution, denote the set of arcs of the spanning
tree by S. It follows that (y∗, z∗) satisfies n− 1 linearly independent inequalities of the
form ya ≥ 0 or ya ≤ ua − `a for a ∈ S with equality.
Co-tree arcs (m− (n− 1) inequalities):
By the proof of Theorem 13, for each co-tree arc a /∈ S, we have y∗a = αF1 , and this is a
flip inequality satisfied with equality. There are of course µ = m− (n− 1) co-tree arcs.
Observe that these are linearly independent with the ones identified for the tree arcs.
Cycle periodicity constraints (µ inequalities):
Finally, we obtain µ equality constraints from Γy∗ − Tz∗ = Γ`, one constraint for each
z-variable.

In total, we have found (n− 1) + µ+ µ = m+ µ linearly independent defining inequalities of
Pflip that are satisfied with equality. Hence (y∗, z∗) is a vertex of Pflip. J

The following theorem, whose proof can be found in the appendix, states that the flip
inequalities (together with the slack bounds) fully describe PIP on PESP instances with
µ ≤ 1, and also on networks with higher cyclomatic number provided that the arc set of any
two distinct cycles is disjoint.

I Theorem 16. Suppose that each arc a ∈ A is contained in at most one (undirected) cycle.
Then Pflip = PIP.

3.3 Examples of Flip Polytopes
I Example 17 (Integral flip polytope). The PESP instance depicted in Figure 3 has cyclomatic
number µ = 1. In particular, Theorem 16 implies Pflip = PIP. The polytope is drawn in
Figure 4.

I Example 18 (Non-integral flip polytope). It is possible that Pflip contains fractional ver-
tices when an arc belongs to more than one cycle. In the instance from Figure 5 with
cyclomatic number 2, a computation with polymake [5] revealed that Pflip has 24 ver-
tices from PIP, but also 39 fractional vertices. For example, (y12, y23, y31, y34, y42, z1, z2) =
(7.7, 2.1, 4.2, 6.5, 0.4, 1.7, 1.1) is such a vertex.

I Example 19 (An infeasible PESP instance). The PESP instance on the wheel graph in
Figure 6 is infeasible. Adding the cycle and change-cycle inequalities to PLP results in a
non-empty polytope. The second Chvátal closure P (2)

LP of PLP is empty, and the emptyness is
certified by two multi-circuit cuts [17].

Due to Theorem 15, the flip polytope can be used to detect that no integer points exist as
well: An instance is infeasible if and only if Pflip has no integer vertices. We use polymake to
compute the vertices of Pflip on the wheel instance. It turns out that Pflip is zero-dimensional
with a single fractional vertex with slack 1

2 on all spokes and 2 on all arcs of the outer cycle.
However, Pflip 6= ∅, so the flip inequalities differ from the multi-circuit cuts. Recall from [17]
that the change-cycle inequalities can have Chvátal rank ≥ T

2 , so does the superclass of flip
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Figure 3 PESP instance from Example 17, arcs a are labeled with [`a, ua], T = 10.
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Figure 4 The polytope PIP = Pflip for the instance in Figure 3 has 12 vertices, 24 edges, 14 facets,
and is combinatorially equivalent to a cuboctahedron. The vertices are labeled with (y12, y13, y23).
Variable bounds are drawn in light grey, the cycle inequalities y12−y13 +y23 ≥ −5 (z ≥ 0, containing
the vertices (0, 5, 0), (0, 9, 4) and (4, 9, 0)) and y12 − y13 + y23 ≤ 15 (z ≤ 2, containing the vertices
(6, 0, 9), (9, 0, 6), and (9, 3, 9)) are green, the unflipped change-cycle inequality 5y12 +5y13 +5y23 ≥ 25
is red, and the remaining five flip inequalities are drawn blue. The light green hexagon in the center
is the hyperplane for z = 1 (containing the vertices (0, 0, 5), (0, 4, 9), (5, 0, 0), (5, 9, 9), (9, 4, 0) and
(9, 9, 5)). We used polymake [5] for computations and visualization.
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Figure 6 Wheel instance from Example 19,
arcs a are labeled with [`a, ua], T = 6.
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inequalities. Hence flipping arcs, as proposed in this paper, in a sense can be considered to
be kind of complimentary to exploiting the concept of Chvátal closures for the first such
closures.

4 Separating Flips in Practice

The flip polytope reveals the vertices of PIP by Theorem 15. Moreover, the flip inequalities
are facet-defining, and can be separated in pseudo-polynomial time by Theorem 14. Hence
this type of inequalities is a reasonable target for cutting plane approaches. Since the general
separation algorithm from [2] is a Bellman-Ford-type dynamic program, which is practically
infeasible due to both time and space consumption, one has to come up with different
separation strategies.

A successful heuristic strategy for separating cycle and change-cycle inequalities in a
branch-and-cut context is to build a minimum spanning tree S w.r.t. the slack of the
current LP relaxation and to add violated inequalities for the fundamental cycles of S. This
approach [3] produced the current best known dual bounds for all 20 instances of the PESP
benchmarking library PESPlib [6]. We will call this the standard approach.

Building on top of the standard approach on a minimum slack spanning tree S, we
consider the following heuristic separation algorithms:

all-flip: For each fundamental cycle γ of S, add all violated cycle and change-cycle
inequalities, as well as all violated flip inequalities obtained by flipping a single arc of γ.
max-flip: For each fundamental cycle γ of S, add all violated cycle and change-cycle
inequalities, and the maximally violated flip inequality among all single-arc flips of γ.
all-flip-hybrid resp. max-flip-hybrid: As all-flip resp. max-flip, but consider flips only if
less than a fixed number of violated (change-)cycle inequalities have been found in the
standard approach.
all-flip-hybrid-small resp. max-flip-hybrid-small: We precompute all cycles of length ≤ k,
and also all up to 2k flip inequalities for each of these cycles. The strategy is then as
in all-flip-hybrid resp. max-flip-hybrid, but with another round that adds violated flip
inequalities from the precomputed pool whenever all-/max-flip-hybrid does not produce
sufficiently many cuts. In this round, the all-version adds all violated flip inequalities,
whereas the max-version adds only the maximally violated flip inequality for each small
cycle.

Conceptually, the standard approach adds the least cuts, and all-flip the most. Less cuts
mean smaller LPs, which is beneficial concerning running time and memory. On the other
hand, more cuts should offer better quality. Our goal is to analyze this trade-off. We always
include the separation of the cycle and change-cycle inequalities, as they belong to the class of
the flip inequalities, and it suffices to validate only one cycle inequality and one change-cycle
inequality per cycle.

Table 1 Overview of our set of instances. The -0.6 suffix indicates that free arcs whose weight
sums up to 60% of the total free weight have been deleted [7].

Instance Hardness n m µ

R1L1-0.6 easy 125 225 101
R4L4-0.6 medium 506 960 455
R1L1 hard 3 664 6 385 2 722
R4L4 extreme 8 384 17 754 9 371

ATMOS 2020



5:12 Determining All Integer Vertices of the PESP Polytope by Flipping Arcs

We compare these strategies on four instances derived from the PESPlib set, see Table 1.
The separation strategies have been implemented in the concurrent PESP solver from [3]
using CPLEX 12.10 [9] as underlying MIP solver. We choose the cycle-based MIP formulation
(?) and compute a minimum weight cycle basis in the sense of [14] in order to keep the branch-
and-bound tree small (except for R4L4, where our implementation runs out of memory).
With the current PESPlib incumbent (i.e., the solution with the smallest objective value
according to [6] as of June 2020) as initial solution, we let the PESP solver run for 12 hours
on up to 6 internal CPLEX threads with best bound MIP emphasis. The computations were
carried out on an Intel Xeon E3-1245 v5 CPU running at 3.5 GHz with 32 GB RAM.

Table 2 Summary of computational results.

Instance PESPlib dual bound new dual bound best strategy optimality gap
R1L1-0.6 – 5 681 843 standard 0.0 %
R4L4-0.6 – 5 245 781 max-flip-hybrid 34.4 %
R1L1 19 878 200 20 230 655 max-flip-hybrid 33.5 %
R4L4 15 840 600 17 961 400 standard 53.2 %

The results are presented in Figures 7 and 8 (in the appendix), and summarized in
Table 2. As the two -0.6 instances are not part of the PESPlib, there are no official dual
bounds available. On the easiest instance R1L1-0.6, all approaches prove optimality, the
standard approach being the fastest. The potentially higher quality of the flip inequality
methods is outweighed by the speed of the standard approach. The picture for R4L4-0.6 is
different: The standard approach performs best only within the first 5 minutes, and after
roughly one and a half hours, it is outperformed by all other methods. The winner here is
max-flip-hybrid, the difference to all-flip and all-flip-hybrid-small (here with cycles of length
≤ 8) being minor.

On the instances R1L1 and R4L4, all-flip requires too much memory and terminates rather
early. For the small cycles, we set a length bound of 4. The winner on R1L1 is again max-
flip-hybrid with all-flip-hybrid as runner-up. For the last two hours, the standard approach
eventually becomes dominated by all other approaches. On R4L4, standard produces the
best bounds within the time limit of 12 hours. However, all algorithms except max-flip ran
out of memory. Here, the solver finds plenty of cuts and does not leave the root node for the
whole running time, explaining the minor differences between the strategies. We want to
remark that, although we use the same method, our dual bound is better than the PESPlib
bound, which is due to the slightly longer computation time compared to [3] and to some
improvements to the code.

There seems to be a point in time when the speed-quality trade-off shifts from the
standard approach towards a flipping strategy such as max-flip-hybrid. We do not reach
this point on R1L1-0.6, as the instance is solved to optimality before, and also not on R4L4,
as the instance is too large to show a significant difference within 12 hours. However, the
positive role of the flip inequalities becomes clearly visible on R4L4-0.6 and R1L1, leading to
significantly better bounds. As it seems to us that the instances are similarly structured, we
expect that the flip inequality approach is able to compute better dual bounds at least for
the smaller PESPlib instances.
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5 Conclusion

We generalized the change-cycle inequalities [21] for a PESP instance by considering them
in a modified instance that emerges from the initial one simply by flipping some arcs to
the opposite direction. We call the resulting set of valid inequalities the flip inequalities.
These turn out to contain not only of course the change-cycle inequalities, but also the cycle
inequalities [23].

From a theoretical point of view, the set of flip inequalities provides a much better
understanding of the integer PESP polytope PIP. To assess their power, add only the flip
inequalities to the LP relaxation PLP of PIP to get another polytope Pflip. Then, the integer
vertices of this particular polytope Pflip turn out to be already precisely the (integer) vertices
of PIP. In some special cases, e.g., when the cyclomatic number is one, Pflip equals PIP.

From a practical point of view, some first positive effects on dual bounds during branch-
and-cut-processes show up in our first computational experiments. But we suppose that there
might exist better separation strategies that take even more benefit out of the flip inequalities.
Yet, this might not turn out to be trivial, due to the huge number of flip inequalities, both
because of the potentially exponential number of cycles in a graph, and the exponentially
many possibilities to perform all flips for each of these cycles.
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A Appendix

Proof of Lemma 4. Any feasible solution of PLP satisfies the µ linear independent equations
Γ(y + `) = Tz. Hence, by Theorem 3, a vertex must satisfy m linear independent out
of the 2m inequalities 0 ≤ y ≤ u − ` with equality. Conversely, let (y∗, z∗) ∈ PLP with
y∗a ∈ {0, ua − `a} for all a ∈ A. Define c ∈ RA by

ca :=
{

1 if y∗a = 0,
−1 if y∗a = ua − `a,

a ∈ A.

Then (y∗, z∗) is the unique point in PLP minimizing cty and hence a vertex of PLP. J

Proof of Theorem 6. The statement for PLP follows from Lemma 4. Let (y∗, z∗) be a vertex
of PIP. Then y∗ is a vertex of the polytope

Pz∗ := {y ∈ RA | Γ(y + `) = Tz∗, 0 ≤ y ≤ u− `},

because otherwise, if we find a proper convex combination y∗ = λy′ + (1 − λ)y′′ for some
y′, y′′ ∈ Pz∗ \ {y∗} and λ ∈ (0, 1), then also (y∗, z∗) = λ(y′, z∗) + (1− λ)(y′′, z∗) constitutes
a proper convex combination in PLP, thus preventing (y∗, z∗) from being a vertex. Being a
vertex of Pz∗ means that there are µ−m = n−1 arcs a ∈ A for which y∗a = 0 or y∗a = ua− `a
is true, and the subgraph on these arcs must not contain a cycle, as the rows of Γ span the
cycle space. So these n− 1 arcs belong to a spanning tree. J

Proof of Lemma 11. Suppose F = {a ∈ A | γa = −1}. Then the flip inequality reads as

(T − αF )γt+y + (T − αF )γt−(u− `− y) ≥ αF (T − αF ),

and hence, since αF ∈ [0, T ),

γt+y + γt−(u− `− y) ≥ αF = [−γt+`+ γt−u]T .

Adding γt+`− γt−u on both sides, we obtain

γt(y + `) ≥ γt+`− γt−u+ [−γt+`+ γt−u]T = T

⌈
γt+`− γt−u

T

⌉
,

because of r+ [−r]T = T
⌈
r
T

⌉
. The other part of the cycle inequality is analogously obtained

for F = {a ∈ A | γa = 1}. J

Proof of Theorem 16. Under the hypotheses of the theorem, we can partition the PESP
instance into subinstances consisting either of exactly one cycle each (i.e., µ = 1) or of arcs
not contained in any cycle (µ = 0). Observe that PLP, Pflip, PIP all decompose as the product
of the corresponding polytopes of these subinstances. Since we clearly have PLP = PIP if
µ = 0, we can hence assume w.l.o.g. that G is a single oriented cycle γ.

By Theorem 6, any vertex (y, z) of PIP is a spanning tree solution. In our case, this means
that ya ∈ {0, ua − `a} for at least m− 1 = n− 1 arcs a ∈ A, and z is already determined by
y via z = γt(y+`)

T . This means that y is a point on an edge of the projection QLP of PLP to
the slack space, as QLP is an m-dimensional cube scaled by u− ` (Lemma 4). Of course, if
ya is at its lower or upper bound for all m edges, then y is a vertex of QLP. Note that for
each cube edge, we find at most one y such that (y, z) is a vertex of PIP. The projection QIP
of PIP to the y-space is the convex hull of all y for (y, z) ∈ PIP, and is hence combinatorially
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equivalent to a (partially) rectified m-cube: We obtain QIP from the m-cube QLP by cutting
off each cube vertex q by the hyperplane Hq given by the convex hull of all points y on the
edges incident to q stemming from vertices of PIP. The resulting polytope has two types
of facets: The up to 2m hyperplanes Hq and the remainining parts of the 2m facets of the
original m-cube. The latter are clearly given by the bounds ya ≥ 0 and ya ≤ ua − `a.

We claim that all Hq are coming from the flip inequalities. Let q be a vertex of QLP
and define F := {a ∈ A | qa = ua − `a}. Note that qa = 0 for a ∈ A \ F . Now F gives
rise to a flip inequality. Let (y, z) ∈ PIP be a vertex such that y is on an edge of QLP
incident to q. Let a′ denote the co-tree arc of the spanning tree associated to (y, z), so
that ya = qa for all a ∈ A \ {a′}. If γa′ = 1 and a′ /∈ F , then the flip inequality for F is
(T − αF )ya′ ≥ αF (T − αF ). As γt(y + `) ≡ 0 mod T implies ya′ = αF (compare the proof
of Theorem 13), the flip inequality is hence satisfied with equality. In the case γa′ = 1 and
a′ ∈ F , the flip inequality reads as αF (ua′ − `a′ − ya′) ≥ αF (T − αF ) and is satisfied with
equality, as γt(y + `) ≡ 0 mod T implies ua′ − `a′ − ya′ = T − αF . The computations for
γa′ = −1 are similar. We conclude that y lies on the hyperplane where the flip inequality for
F is tight. In particular, Hq is induced by a flip inequality.

Mapping QIP back to PIP using the affine transformation y 7→ (y, γ
t(y+`)
T ), we obtain

Pflip = PIP. J
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Figure 7 Dual bound evolution on R1L1-0.6 and R4L4-0.6: Dual bound vs. logarithmic time (i.e.
2.0 stands for 102.0 = 100 seconds of computation time).
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Figure 8 Dual bound evolution on R1L1 and R4L4: Dual bound vs. logarithmic time (i.e. 2.0
stands for 102.0 = 100 seconds of computation time).
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