448 research outputs found
Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts(IUPAC Recommendations 2001)
A system of terms applicable to ordered microporous and mesoporous materials is proposed, and rules for writing a standardized crystal chemical formula for such materials are presented. The recommendations are based both on common usage and on a systematic classification scheme. The nomenclature has been developed to encompass all inorganic materials with ordered, accessible pores with free diameters of less than 50 nm. The crystal chemical formula describes the chemical composition of both the guest species and the host, the structure of the host, the structure of the pore system, and the symmetry of the material. This formula can be simplified or expanded to suit the user's requirement
Ultrathin oxides: bulk-oxide-like model surfaces or unique films?
To better understand the electronic and chemical properties of wide-gap oxide
surfaces at the atomic scale, experimental work has focused on epitaxial films
on metal substrates. Recent findings show that these films are considerably
thinner than previously thought. This raises doubts about the transferability
of the results to surface properties of thicker films and bulk crystals. By
means of density-functional theory and approximate GW corrections for the
electronic spectra we demonstrate for three characteristic wide-gap oxides
(silica, alumina, and hafnia) the influence of the substrate and highlight
critical differences between the ultrathin films and surfaces of bulk
materials. Our results imply that monolayer-thin oxide films have rather unique
properties.Comment: 5 pages, 3 figures, accepted by PR
Alzheimer’s and Seizures: Interleukin-18, Indoleamine 2,3-Dioxygenase and Quinolinic Acid
Emergent seizures are common in Alzheimer’s disease (AD), although the mechanisms mediating this are unknown. It is proposed that stress induced interleukin-18 (IL-18), via interferon-gamma (IFNy) and independently, increases indoleamine 2,3-dioxygenase (IDO) and subsequent quinolinic acid (QA) in microglia. QA increases seizures and concurrently contributes to neuronal loss via excitotoxicity. The ApoE4 allele interacts with IL-18 polymorphisms to increase the risk of AD, and seems likely to potentiate the emergence of seizures. Concurrent changes in IDO and the kynurenine pathways at the blood-brain-barrier (BBB) have implications for treatment, including in the efficacy of different anti-hypertensives. Melatonin is proposed to inhibit these overlapping excitotoxic and neurodegenerative processes, and would be a useful adjunctive treatment
Sub 20 nm Short Channel Carbon Nanotube Transistors
Carbon nanotube field-effect transistors with sub 20 nm long channels and
on/off current ratios of > 1000000 are demonstrated. Individual single-walled
carbon nanotubes with diameters ranging from 0.7 nm to 1.1 nm grown from
structured catalytic islands using chemical vapor deposition at 700 degree
Celsius form the channels. Electron beam lithography and a combination of HSQ,
calix[6]arene and PMMA e-beam resists were used to structure the short channels
and source and drain regions. The nanotube transistors display on-currents in
excess of 15 microA for drain-source biases of only 0.4 Volt.Comment: Nano Letters in pres
Low temperature structural phase transition and incommensurate lattice modulation in the spin gap compound BaCuSi2O6
Results of high resolution x-ray diffraction experiments are presented for
single crystals of the spin gap compound BaCuSiO in the temperature
range from 16 to 300 K. The data show clear evidence of a transition from the
room temperature tetragonal phase into an incommensurately modulated
orthorhombic structure below 100 K. This lattice modulation is
characterized by a resolution limited wave vector {\bf
q}=(0,0.13,0) and its 2 and 3 harmonics. The phase
transition is first order and exhibits considerable hysteresis. This
observation implies that the spin Hamiltonian representing the system is more
complex than originally thought.Comment: 4 pages, 4 figure
Structure, bonding and morphology of hydrothermally synthesised xonotlite
The authors have systematically investigated the role of synthesis conditions upon the structure and morphology of xonotlite. Starting with a mechanochemically prepared, semicrystalline phase with Ca/Si=1, the authors have prepared a series of xonotlite samples hydrothermally, at temperatures between 200 and 250 degrees C. Analysis in each case was by X-ray photoelectron spectroscopy, environmental scanning electron microscopy and X-ray diffraction. The authors’ use of a much lower water/solid ratio has indirectly confirmed the ‘through solution’ mechanism of xonotlite formation, where silicate dissolution is a key precursor of xonotlite formation. Concerning the role of temperature, too low a temperature (~200 degrees C) fails to yield xonotlite or leads to increased number of structural defects in the silicate chains of xonotlite and too high a temperature (>250 degrees C) leads to degradation of the xonotlite structure, through leaching of interchain calcium. Synthesis duration meanwhile leads to increased silicate polymerisation due to diminishing of the defects in the silicate chains and more perfect crystal morphologies
Bias Dependence and Electrical Breakdown of Small Diameter Single-Walled Carbon Nanotubes
The electronic breakdown and the bias dependence of the conductance have been
investigated for a large number of catalytic chemical vapor deposition (CCVD)
grown single-walled carbon nanotubes (SWCNTs) with very small diameters. The
convenient fabrication of thousands of properly contacted SWCNTs was possible
by growth on electrode structures and subsequent electroless palladium
deposition. Almost all of the measured SWCNTs showed at least weak gate
dependence at room temperature. Large differences in the conductance and
breakdown behavior have been found for "normal" semiconducting SWCNTs and small
band-gap semiconducting (SGS) SWCNTs.Comment: submitted to Journal of Applied Physic
- …