77 research outputs found

    An optical nanocavity incorporating a fluorescent organic dye having a high quality factor

    Get PDF
    We have fabricated an L3 optical nanocavity operating at visible wavelengths that is coated with a thin-film of a fluorescent molecular-dye. The cavity was directly fabricated into a pre-etched, free-standing silicon-nitride (SIN) membrane and had a quality factor of Q = 2650. This relatively high Q-factor approaches the theoretical limit that can be expected from an L3 nanocavity using silicon nitride as a dielectric material and is achieved as a result of the solvent-free cavity-fabrication protocol that we have developed. We show that the fluorescence from a red-emitting fluorescent dye coated onto the cavity surface undergoes strong emission intensity enhancement at a series of discrete wavelengths corresponding to the cavity modes. Three dimensional finite difference time domain (FDTD) calculations are used to predict the mode structure of the cavities with excellent agreement demonstrated between theory and experiment

    Optical nanolithography using a scanning near-field probe with an integrated light source

    Get PDF
    An ultracompact near-field optical probe is described that is based on a single, integrated assembly consisting of a gallium nitride (GaN) light-emitting diode (LED), a microlens, and a cantilever assembly containing a hollow pyramidal probe with a subwavelength aperture at its apex. The LED emits ultraviolet light and may be used as a light source for near-field photolithographic exposure. Using this simple device compatible with many commercial atomic force microscope systems, it is possible to form nanostructures in photoresist with a resolution of 35 nm, corresponding to λ/10. © 2008 American Institute of Physics

    A chemical sensor based on a photonic-crystal L3 nanocavity defined in a silicon-nitride membrane

    Get PDF
    The application of a silicon-nitride based L3 optical nanocavity as a chemical sensor is explored. It is shown that by adjusting the thickness of an ultra-thin Lumogen Red film deposited onto the nanocavity surface, the fundamental optical mode undergoes a progressive red-shift as the layer-thickness increases, with the cavity being able to detect the presence of a single molecular monolayer. The optical properties of a nanocavity whose surface is coated with a thin layer of a porphyrin-based polymer are also explored. On exposure of the cavity to an acidic-vapour, it is shown that changes in the optical properties of the porphyrin-film (thickness and refractive index) can be detected through a reversible shift in the cavity mode wavelength. Such effects are described using a finite difference time-domain model

    Highly efficient coupling between a monolithically integrated photonic crystal cavity and a bus waveguide

    Get PDF
    We experimentally demonstrate a new optical filter design comprising of a photonic crystal cavity and a low index bus waveguide which are monolithically integrated on a silicon-on-insulator (SOI) platform. We have fabricated oxide clad PhC cavities with a silicon nitride waveguide positioned directly above, such that there is an overlap between the evanescent tails of the two modes. We have realised an extinction ratio of 7.5dB for cavities with total Q of 50,000.Postprin

    Strong coupling in a microcavity containing β-carotene

    Get PDF
    © 2018 Optical Society of America. Abstract: We have fabricated an open-cavity microcavity structure containing a thin film of the biologically-derived molecule β-carotene. We show that the β-carotene absorption can be described in terms of a series of Lorentzian functions that approximate the 0-0, 0-1, 0-2, 0-3 and 0-4 electronic and vibronic transitions. On placing this molecular material into a microcavity, we obtain anti-crossing between the cavity mode and the 0-1 vibronic transition, however other electronic and vibronic transitions remain in the intermediate or weak-coupling regime due to their lower oscillator strength and broader linewidth. We discuss the consequences of strong-coupling for the possible modification of photosynthetic processes, or a re-ordering of allowed and optically-forbidden states

    Shaping potential landscape for organic polariton condensates in double-dye cavities

    Full text link
    We investigate active spatial control of polariton condensates independently of the polariton-, gain-inducing excitation profile. This is achieved by introducing an extra intracavity semiconductor layer, non-resonant to the cavity mode. Saturation of the optical absorption in the uncoupled layer enables the ultra-fast modulation of the effective refractive index and, through excited-state absorption, the polariton dissipation. Utilising these mechanisms, we demonstrate control over the spatial profile and density of a polariton condensate at room temperature

    Lévy defects in matrix-immobilized J aggregates : tracing intra-and intersegmental exciton relaxation

    Get PDF
    L.L. thanks the EC for financial support by the cofunded Amarout program and the Spanish Ministry for economy and competitiveness (plan nacional, Project MultiCrom (CTQ2014-58801)). G.C. acknowledges financial support by the European Research Council (ERC-2011-AdG No. 291198). D.G.L. and D.C. thank the UK EPSRC for funding via research grant EP/M025330/1 “Hybrid Polaritonics”One-dimensional J aggregates present narrow and intense absorption and emission spectra that are interesting for photonics applications. Matrix immobilization of the aggregates, as required for most device architectures, has recently been shown to induce a non-Gaussian (Lévy type) defect distribution with heavy tails, expected to influence exciton relaxation. Here we perform two-dimensional electronic spectroscopy (2DES) in one-dimensional J aggregates of the cyanine dye TDBC, immobilized in a gel matrix, and we quantitatively model 2DES maps by nonlinear optimization coupled to quantum mechanical calculations of the transient excitonic response. We find that immobilization causes strong non-Gaussian off-diagonal disorder, leading to a segmentation of the chains. Intersegmental exciton transfer is found to proceed on the picosecond time scale, causing a long-lasting excitation memory. These findings can be used to inform the design of optoelectronic devices based on J aggregates as they allow for control of exciton properties by disorder management.PostprintPostprintPeer reviewe

    k-Space Hyperspectral Imaging by a Birefringent Common-Path Interferometer

    Get PDF
    Fourier-plane microscopy is a powerful tool for measuring the angular optical response of a plethora of materials and photonic devices. Among them, optical microcavities feature distinctive energy-momentum dispersions, crucial for a broad range of fundamental studies and applications. However, measuring the whole momentum space (k-space) with sufficient spectral resolution using standard spectroscopic techniques is challenging, requiring long and alignment-sensitive scans. Here, we introduce a k-space hyperspectral microscope, which uses a common-path birefringent interferometer to image photoluminescent organic microcavities, obtaining an angle- and wavelength-resolved view of the samples in only one measurement. The exceptional combination of angular and spectral resolution of our technique allows us to reconstruct a three-dimensional (3D) map of the cavity dispersion in the energy-momentum space, revealing the polarization-dependent behavior of the resonant cavity modes. Furthermore, we apply our technique for the characterization of a dielectric nanodisk metasurface, evidencing the angular and spectral behavior of its anapole mode. This approach is able to provide a complete optical characterization for materials and devices with nontrivial angle-/wavelength-dependent properties, fundamental for future developments in the fields of topological photonics and optical metamaterials

    Nonlinear interactions of dipolar excitons and polaritons in MoS2 bilayers

    Full text link
    Nonlinear interactions between excitons strongly coupled to light are key for accessing quantum many-body phenomena in polariton systems. Atomically-thin two-dimensional semiconductors provide an attractive platform for strong light-matter coupling owing to many controllable excitonic degrees of freedom. Among these, the recently emerged exciton hybridization opens access to unexplored excitonic species, with a promise of enhanced interactions. Here, we employ hybridized interlayer excitons (hIX) in bilayer MoS2 to achieve highly nonlinear excitonic and polaritonic effects. Such interlayer excitons possess an out-of-plane electric dipole as well as an unusually large oscillator strength allowing observation of dipolar polaritons(dipolaritons) in bilayers in optical microcavities. Compared to excitons and polaritons in MoS2 monolayers, both hIX and dipolaritons exhibit about 8 times higher nonlinearity, which is further strongly enhanced when hIX and intralayer excitons, sharing the same valence band, are excited simultaneously. This gives rise to a highly nonlinear regime which we describe theoretically by introducing a concept of hole crowding. The presented insight into many-body interactions provides new tools for accessing few-polariton quantum correlations
    corecore