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ABSTRACT   

We experimentally demonstrate a new optical filter design comprising of a photonic crystal cavity and a low index bus 

waveguide which are monolithically integrated on a silicon-on-insulator (SOI) platform. We have fabricated oxide clad 

PhC cavities with a silicon nitride waveguide positioned directly above, such that there is an overlap between the 

evanescent tails of the two modes. We have realised an extinction ratio of 7.5dB for cavities with total Q of 50,000. 
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1. INTRODUCTION  

Two-dimensional photonic crystals have attracted a lot of attention because of their ability to strongly confine light in 

both space and time by means of the photonic band gap effect
1
. The two dimensional geometry is  compatible with 

standard semiconductor processes allowing 2D photonic crystal based devices such as waveguides
2
, light sources

3,4,5
and 

resonant cavities
6,7,8,9

 to be realized in a range of different platforms. Photonic crystal based resonant nanocavities are of 

particular interest for Wavelength Division Multiplexing, quantum electro dynamics and light sources because of their 

ultra-small mode volume and ultra-high quality factor
6,7

.  

Wavelength division multiplexing has become an essential part of modern optical communication systems, maximizing 

the available bandwidth by transmitting multiple channels simultaneously through the same optical fiber using multiple 

wavelengths. In a WDM system, high Q nanocavity based filters can be used to multiplex and demultiplex closely 

spaced channels
10

. The low mode volume maximizes the integration density and allows very low power operation.  

There are two main coupling approaches used to achieve an efficient optical filter by means of a waveguide/photonic 

crystal cavity system; one is planar coupling
8,9,11,12,13

, such as in-line coupling and side coupling, where both the cavity 

and the waveguides are created from the same photonic crystal; and the other is fiber taper based coupling, where light is 

coupled from a vertically placed fiber taper to the cavity
14,15,16 

.  

The planar coupling scheme offers the possibility of monolithic integration. However, the presence of waveguides in 

close proximity to a high Q cavity introduces additional k-vector components within the light cone of the cavity 

increasing the out-of-plane loss and reducing the overall quality factor
8
. As the coupling strength depends on the 

separation between the cavity and the waveguide, the planar coupling scheme has limited design flexibility because of 

the discrete separation between the waveguide and the cavity-decided by the period of the photonic crystal lattice. 

Additionally due to the use of a bus waveguide composed of a high refractive index material, there can be huge insertion 

losses due to a large index mismatch mode mismatch with an optical fiber. Inverse tapers
17

 and grating couplers
18

 have 

been used to reduce this loss; however this adds design and fabrication complexity or bandwidth limitations.  
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Vertical coupling using tapered fiber can alleviate some of these problems. This is a relatively simple technique in which 

the mode of the tapered fiber overlaps with that of the cavity allowing a wavelength power transfer
15

. However, there is 

still a strong refractive index mismatch the tapered fiber and the cavity limits the filtering/drop efficiency to less than 

3dB
14

. There are several designs proposed to improve the coupling efficiency
15,16

, the drop efficiency remains 

insufficient for use in WDM systems for telecommunication. In addition, the mechanical stability of the fiber coupling 

approach is poor, limiting the potential applications.  

In this paper we propose a novel design of an optical filter based on cavity-waveguide coupling system where a bus 

waveguide of low index material is vertically coupled to a photonic crystal cavity in the Silicon on insulator platform. A 

thin oxide layer separates the two layers, providing some control over the coupling strength and mechanical stability. 

This technique offers a high degree of design flexibility and can achieve large coupling efficiency in a monolithic 

system. 

 

2. DESIGN  

The proposed vertical coupling scheme is shown in Figure 1. Here we consider that both the waveguide and the cavity 

are single mode in the wavelength range of interest. Hence under week-coupling approximation, the power transmission 

and reflection coefficient of the coupled waveguide-cavity system can be expressed as
12
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Where, Γcavity (=ωo/2Qcavity) represents the intrinsic decay rate of the unloaded cavity and Γcoupling represents the cavity 

decay rate in the presence of the waveguide. From the above equations it is obvious that at resonance (ω=ωo), T~0 and 

R~1, when Γcavity<< Γcoupling.  

 

Figure 1. Schematic diagram of the proposed vertically coupled cavity waveguide system. A photonic crystal cavity on 

Silicon layer is coupled to a low index waveguide and separated by a thin layer of oxide. 

In this vertical coupling approach it is possible to control Γcavity and Γcavity separately. To achieve a large unloaded quality 

factor (i.e. small Γcavity) of the cavity we use a dispersion adapted (DA) Photonic-Crystal (PhC) Cavity that is designed to 

confine the Gaussian mode profile in a gentle way. A W1 PhC waveguide is the basis of the cavity where we overlay an 

additional mode confinement in form of a potential well. The potential well is adapted to the dispersion curve of the PhC 

waveguide where its shape is recreated by laterally shifted holes. To do so, we use a dual-method, consisting of a (1) 

numerical plane-wave expansion method to simulate the dispersion curve and the cut-off frequencies for individual hole-

shifts, and (2) an analytical formalism that allows to recreate the potential well by specifically shifted holes. The details 

of the cavity design will be presented elsewhere. 

Γcoupling depends mainly on two factors, a) spatial overlap of the evanescent modes of the cavity and the waveguide and b) 

phase matching between the two modes. The evanescent coupling between the waveguide and the cavity modes occurs in 



 

 
 

 

the barrier layer. As a result, the thickness of the barrier layer controls the degree of overlap between the evanescent tails 

of the two modes. And phase matching depends on the k-space overlap between the two modes. Figure 2a and 2b shows 

the real space field distribution and its Fourier transform of the dominant electric field Ey in the transverse (x-y) plane 

respectively. Figure 2c and 2d shows the same in x-z plane. And Figure 2e and 2f shows the real space and Fourier 

transform of the Ey field in transverse plane for the waveguide. Since the Fourier components of the dominant field of 

the cavity is centered about Kz = 0, phase matching will primarily depend on the overlap between the transverse Fourier 

components of the waveguide and the cavity. Unlike in-plane coupling, vertically coupled waveguide does not alter the 

mode profile of the cavity significantly thus maintaining its high Q. Hence it is possible to position the waveguide very 

close to the cavity in order to achieve high extinction ratio. 

 

 

Figure 2. Dominant electric field profile of the cavity in transverse plane a) real space distribution, b) K-space 

distribution; Dominant electric field distribution in x-z plane a) real space distribution d) K-space distribution; e) 

real space and f)  K-space distribution of the dominant field of the waveguide in transverse plane. 

 



 

 
 

 

3. FABRICATION  

The complete fabrication process
19

 is illustrated in Figure 3. A SOITEC silicon on insulator wafer with 220nm silicon 

with 2000nm buried oxide was spun with 400nm thick layer of an ebeam resist ZEP 520A. Using a hybrid ZEISS 

GEMINI 1530/RAITH ELPHY electron beam writer photonic crystal cavities were patterned into the resist at an 

acceleration voltage of 30KeV. The sample was then developed using Xylene and the pattern was transferred to the 

silicon layer via Reactive Ion Etching with SF6 and CHF3 gases at low power (20W) and low DC bias (-210V) to ensure 

smooth side walls. Eventually the resist was cleaned using resist stripper 1165 and Piranha (3:1 H2SO4:H2O2). The 

sample was then spun with a flowable oxide (FOx) containing hydrogen silsesquioxane (commercially available FOx-14 

from Dow Corning). The sample was then baked at 100
o
C to remove the solvent and then hard baked at 400

o
C for four 

hours. The resulting oxide cladding had a thickness of 500nm. The oxide layer thickness was then reduced to 200nm by 

RIE with CHF3 gas, which was found to be the optimum thickness for efficient coupling while maintaining high Q. A 

layer of silicon nitride was then deposited on the surface using plasma-enhanced chemical vapour deposition (PECVD). 

This was done using a Plasma-Therm 790 Series system, depositing the layer over a period of 45 minutes.  After the 

deposition, the deposited layer was examined to verify the thickness and refractive index using an ellipsometer, where 

they were found to be 505nm and 1.88 respectively. The sample is then spun with ZEP 520A resist and waveguides with 

different width are patterned into the resist. The waveguide patterns were then transferred to the silicon nitride layer 

using reactive ion etching with CHF3 and O2 gases. 

 

Figure 3. Fabrication process of the vertically coupled cavity-waveguide system, a) starting SOI wafer, b) Photonic 

crystal cavity patterns written into top silicon layer, c) Sample is cladded with FOx, c) Silicon nitride waveguide 

fabticated on top of the FOx layer. 

 

4. EXPERIMENTAL RESULTS  

In the experimental setup, an end-fire technique was used. Light from a broad band (1520nm to 1620nm) amplified 

spontaneous emission (ASE) source was passed through a polarization beam splitter allowing only TE polarized light to 

couple into the top waveguide using a lensed fiber. The output light was then collected by an objective lens and fed to an 

optical spectrum analyzer (OSA). The cavity was designed to have resonance wavelength around 1550nm. Figure 4 



 

 
 

 

shows a typical transmission and reflection spectra of the coupled cavity-waveguide system. At resonance, almost 80% 

of the light is reflected back and the overall quality factor is still maintained at 50000. From this results we can infer that 

Qcoupling ≈ 60000, and Qcavity ≈ 110000, where 1/ Qcavity = 1/ Qdesign + 1/ Qfabrication. And also due to the use of low index 

waveguides, the insertion loss is as low as 3dB, though it has been stated that loss can be as low as 0.05dB
20

. 

 

Figure 4. Transmission and reflection spectra of the vertically coupled cavity waveguide system 

 

5. CONCLUSION  

In this work an optical filter comprising of a vertically coupled cavity-waveguide system is proposed. Use of high-Q 

photonic crystal cavity offers an ultra-compact filter. This vertical coupling technique allows complete flexibility in 

choosing the cavity and waveguide design separately in order to achieve required Q and drop efficiency. We have 

experimentally found that an extinction ratio of 7.5dB can be achieved with a total Q of 50000 for a silicon nitride bus 

waveguide separated by a 200nm of oxide layer from the photonic crystal cavity.  
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