45 research outputs found

    Use of a ceramic membrane to improve the performance of two-separate-phase biocatalytic membrane reactor

    Get PDF
    Biocatalytic membrane reactors (BMR) combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%), which remains constant after 6 reaction cycles

    Graphene stimulates the nucleation and growth rate of NaCl crystals from hypersaline solution via membrane crystallization

    Get PDF
    Advanced graphene engineered membranes designed for sustainable crystallization of high-quality crystals from hypersaline water

    Effect of operational parameters on the performance of a magnetic responsive biocatalytic membrane reactor

    Get PDF
    In this work, the performance of an innovative magnetic responsive biocatalytic membrane reactor (BMRSP) has been investigated under various operational parameters. In particular, feed concentrations, flow rates across the bed, temperature and amount of biocatalytic bead were varied to probe the flow-dependent transport and kinetic properties of the reaction and the subsequent hydrolytic performance of the BMRSP. The rate of fouling for the BMRSP was always lower than a corresponding control system. For a given enzymatic concentration, a constant foulant hydrolyzing capacity is identified. At 3 g/m2 pectinase containing bionanocomposites, the BMRSP hydrolytic efficiency was 1.5 g/m2 h. This efficiency was further increased by increasing the amount of bionanocomposites per membrane area. This further allowed the BMRSP to hydrolyze higher loads of foulants while keeping a low if not zero increase in TMP over time at constant flux. Identification of an optimal operating condition laid the platform for continuous operation of the BMRSP over 200 h, without visible transmembrane pressure drift while maintaining constant flux. Product assay in the permeate gave constant value in the entire duration, i.e., no enzymatic activity decay owing to stable enzyme immobilization and no leakage through the pores of the membrane owing to the synergistic magnetic interaction between the magnetic membrane and magnetic bionanocomposites. The obtained stability over a broad range of operational parameters and sustainable performance over long period gives a high prospect to the newly developed BMRSP to be utilized in continuous biocatalysis and separation, thereby significantly improved process efficiency

    Pectinases immobilization on magnetic nanoparticles and their anti-fouling performance in a biocatalytic membrane reactor

    Get PDF
    Enzyme immobilization on commercial superparamagnetic nanoparticles (NPSP) was performed using covalent bonding. The biofunctionalized NPSP was then immobilized on the surface of the membrane using an external magnetic field to form a magneto-responsive biocatalytic membrane reactor (BMRSP). The magnetically formed smart nanolayer can be easily re-dispersed and recovered from the membrane when the enzyme is deactivated or whenever cleaning is required due to substrate over-accumulation. The system was used to hydrolyze pectin contained in different streams. Results are supported with complementary data from hydrodynamic, kinetic and morphological characterization in a flow-through reactive filtration. Wavelength-dispersive X-ray spectroscopy (WDS) elemental mapping revealed that the NPSP are uniformly dispersed on the surface of the membrane forming a thin biocatalytic layer. Both results of hydrodynamic studies and SEM micrographs of the membrane with the enzyme layer under various operating conditions, show that the immobilized enzyme effectively reduced membrane–foulant interaction. Comparison of filtration data using this commercial NPSP reveals good agreement with our previously used home-made NPSP. This implies that the scaling-up and commercialization of the developed BMRSP can be straightforward

    Enzyme catalysis coupled with artificial membranes towards process intensification in biorefinery- a review

    Get PDF
    In this review, for the first time, the conjugation of the major types of enzymes used in biorefineries and the membrane processes to develop different configurations of MBRs, was analyzed for the production of biofuels, phytotherapics and food ingredients. In particular, the aim is to critically review all the works related to the application of MBR in biorefinery, highlighting the advantages and the main drawbacks which can interfere with the development of this system at industrial scale. Alternatives strategies to overcome main limits will be also described in the different application fields, such as the use of biofunctionalized magnetic nanoparticles associated with membrane processes for enzyme re-use and membrane cleaning or the membrane fouling control by the use of integrated membrane process associated with MBR

    Correlating Gas Permeability and Young’s Modulus during the Physical Aging of Polymers of Intrinsic Microporosity Using Atomic Force Microscopy

    Get PDF
    The relationship, during physical aging, between the transport properties and Young’s modulus for films of polymers of intrinsic microporosity (PIM) was investigated using pure gas permeability and atomic force microscopy (AFM) in force spectroscopy mode. Excellent agreement of Young’s modulus measured for the archetypal PIM-1 with values obtained by other techniques in the literature, confirms the suitability of AFM force spectroscopy for the rapid and convenient assessment of mechanical properties. Results from different polymers including PIM-1 and five ultrapermeable benzotriptycene-based PIMs provide direct evidence that size selectivity is strongly correlated to Young’s modulus. In addition, film samples of one representative PIM (PIM-DTFM-BTrip) were subjected to both normal physical aging and to accelerated aging by thermal conditioning under vacuum for comparison. Accelerated aging resulted in a similar decrease in permeability and increase in Young’s modulus as normal aging, however, significant differences suggest that thermally induced accelerated aging occurs throughout the bulk of the polymer film whereas normal aging occurs predominantly at the surface of the film. For all PIMs, the increased in film rigidity upon aging led to an increase in gas size selectivity

    Biorefinery of olive leaves to produce dry oleuropein aglycone:use of homemade ceramic capillary biocatalytic membranes in a multiphase system

    Get PDF
    Oleuropein aglycone is an important antioxidant compound produced during oleuropein hydrolysis, not yet commercially available. Its production from renewable material by green processes is a challenge because it permits waste re-use and low environmental impact. In this work, homemade asymmetric capillary ceramic membranes were used to develop biocatalytic membranes, which were further used to produce oleuropein aglycone from olive leaves and/or commercial oleuropein. Results indicated that the biocatalytic system (containing covalently immobilized β-glucosidase) promotes the hydrolysis of oleuropein in both monophase and multiphase processes. Furthermore, the multiphase biocatalytic system enables the extraction of the hydrophobic oleuropein aglycone in an organic phase, before its rearrangement in water. This was achieved by the production, of an unstable water-in-oil emulsion (permeate side), on the basis of membrane emulsification process. The intensified biocatalytic/extractor system allowed taking shelter the hydrophobic compound in the organic phase with good efficiency (90%), protecting it from rearrangement

    Membrane Engineering

    No full text
    Modern membrane science and technology aids engineers in developing and designing more efficient and environmentally-friendly processes. The optimal material and membrane selection as well as applications in the many involved industries are provided. This work is the ideal introduction for engineers working in membrane science and applications (wastewater, desalination, adsorption, and catalysis), process engineers in separation science, biologists and biochemists, environmental scientists, and most of all students. Its multidisciplinary approach also stimulates thinking of hybrid technologies for current and future life-saving applications (artificial organs, drug delivery).Современная наука и технология в области мембран помогают инженерам разрабатывать более эффективные и безвредные для окружающей среды процессы. Обеспечивается оптимальный выбор материалов и мембран, а также их применение во многих отраслях промышленности. Эта работа является идеальным введением для инженеров, работающих в области изучения мембран и их применения (очистка сточных вод, опреснение, адсорбция и катализ), инженеров-технологов в области разделения, биологов и биохимиков, ученых-экологов и, прежде всего, студентов. Его междисциплинарный подход также стимулирует размышления о гибридных технологиях для текущих и будущих применений, спасающих жизни (искусственные органы, доставка лекарств)
    corecore