27 research outputs found

    Data_Sheet_1_Increasing ventilation reduces SARS-CoV-2 airborne transmission in schools: A retrospective cohort study in Italy's Marche region.docx

    No full text
    IntroductionWhile increasing the ventilation rate is an important measure to remove inhalable virus-laden respiratory particles and lower the risk of infection, direct validation in schools with population-based studies is far from definitive.MethodsWe investigated the strength of association between ventilation and SARS-CoV-2 transmission reported among the students of Italy's Marche region in more than 10,000 classrooms, of which 316 were equipped with mechanical ventilation. We used ordinary and logistic regression models to explore the relative risk associated with the exposure of students in classrooms.Results and discussionFor classrooms equipped with mechanical ventilation systems, the relative risk of infection of students decreased at least by 74% compared with a classroom with only natural ventilation, reaching values of at least 80% for ventilation rates >10 L sāˆ’1 studentāˆ’1. From the regression analysis we obtained a relative risk reduction in the range 12?% for each additional unit of ventilation rate per person. The results also allowed to validate a recently developed predictive theoretical approach able to estimate the SARS-CoV-2 risk of infection of susceptible individuals via the airborne transmission route. We need mechanical ventilation systems to protect students in classrooms from airborne transmission; the protection is greater if ventilation rates higher than the rate needed to ensure indoor air quality (>10 L sāˆ’1 studentāˆ’1) are adopted. The excellent agreement between the results from the retrospective cohort study and the outcome of the predictive theoretical approach makes it possible to assess the risk of airborne transmission for any indoor environment.</p

    Dynamics and Viability of Airborne Respiratory Syncytial Virus under Various Indoor Air Conditions

    No full text
    The factors governing the viability of airborne viruses embedded within respiratory particles are not well understood. This study aimed to investigate the relative humidity (RH)-dependent viability of airborne respiratory syncytial virus (RSV) in simulated respiratory particles suspended in various indoor air conditions. We tested airborne RSV viability in three static indoor air conditions, including sub-hysteresis (RH < 39%), hysteresis (39% < RH < 65%), and super-hysteresis (RH > 65%) air as well as in three dynamic indoor air conditions, including the transitions between the static conditions. The dynamic conditions were hysteresis ā†’ super-hysteresis ā†’ hysteresis, sub-hysteresis ā†’ hysteresis, and super-hysteresis ā†’ hysteresis. We found that after 45 min of particle aging in static conditions, the viability of RSV in sub-hysteresis, hysteresis, and super-hysteresis air was 0.72% Ā± 0.06%, 0.03% Ā± 0.006%, and 0.27% Ā± 0.008%, respectively. After 45 min of aging in dynamic conditions, the RSV viability decreased for particles that remained in a liquid (deliquesced) state during aging when compared with particles in a solid (effloresced) state. The decreased viability of airborne RSV for deliquesced particles is consistent with prolonged exposure to elevated aqueous solutes. These results represent the first measurements of the survival of airborne RSV over particle aging time, with equal viability in low, intermediate, and high RHs at 5 and 15 min and a V-shaped curve after 45 min

    Composition and Morphology of Particle Emissions from in-use Aircraft during Takeoff and Landing

    No full text
    In order to provide realistic data for air pollution inventories and source apportionment at airports, the morphology and composition of ultrafine particles (UFP) in aircraft engine exhaust were measured and characterized. For this purpose, two independent measurement techniques were employed to collect emissions during normal takeoff and landing operations at Brisbane Airport, Australia. PM<sub>1</sub> emissions in the airfield were collected on filters and analyzed using the particle-induced X-ray emission (PIXE) technique. Morphological and compositional analyses of individual ultrafine particles in aircraft plumes were performed on silicon nitride membrane grids using transmission electron microscopy (TEM) combined with energy-dispersive X-ray microanalysis (EDX). TEM results showed that the deposited particles were in the range of 5ā€“100 nm in diameter, had semisolid spherical shapes and were dominant in the nucleation mode (18ā€“20 nm). The EDX analysis showed the main elements in the nucleation particles were C, O, S, and Cl. The PIXE analysis of the airfield samples was generally in agreement with the EDX in detecting S, Cl, K, Fe, and Si in the particles. The results of this study provide important scientific information on the toxicity of aircraft exhaust and their impact on local air quality

    Ozone-Initiated Particle Formation, Particle Aging, and Precursors in a Laser Printer

    No full text
    An increasing number of researchers have hypothesized that ozone may be involved in the particle formation processes that occur during printing, however no studies have investigated this further. In the current study, this hypothesis was tested in a chamber study by adding supplemental ozone to the chamber after a print job without measurable ozone emissions. Subsequent particle number concentration and size distribution measurements showed that new particles were formed minutes after the addition of ozone. The results demonstrated that ozone did react with printer-generated volatile organic compounds (VOCs) to form secondary organic aerosols (SOAs). The hypothesis was further confirmed by the observation of correlations among VOCs, ozone, and particles concentrations during a print job with measurable ozone emissions. The potential particle precursors were identified by a number of furnace tests, which suggested that squalene and styrene were the most likely SOA precursors with respect to ozone. Overall, this study significantly improved scientific understanding of the formation mechanisms of printer-generated particles, and highlighted the possible SOA formation potential of unsaturated nonterpene organic compounds by ozone-initiated reactions in the indoor environment

    Endotoxins in Indoor Air and Settled Dust in Primary Schools in a Subtropical Climate

    No full text
    Endotoxins can significantly affect the air quality in school environments. However, there is currently no reliable method for the measurement of endotoxins, and there is a lack of reference values for endotoxin concentrations to aid in the interpretation of measurement results in school settings. We benchmarked the ā€œbaselineā€ range of endotoxin concentration in indoor air, together with endotoxin load in floor dust, and evaluated the correlation between endotoxin levels in indoor air and settled dust, as well as the effects of temperature and humidity on these levels in subtropical school settings. Bayesian hierarchical modeling indicated that the concentration in indoor air and the load in floor dust were generally (<95th percentile) <13 EU/m<sup>3</sup> and <24,570 EU/m<sup>2</sup>, respectively. Exceeding these levels would indicate abnormal sources of endotoxins in the school environment and the need for further investigation. Metaregression indicated no relationship between endotoxin concentration and load, which points to the necessity for measuring endotoxin levels in both the air and settled dust. Temperature increases were associated with lower concentrations in indoor air and higher loads in floor dust. Higher levels of humidity may be associated with lower airborne endotoxin concentrations

    Observations on the Formation, Growth and Chemical Composition of Aerosols in an Urban Environment

    No full text
    The charge and chemical composition of ambient particles in an urban environment were determined using a neutral particle and air ion spectrometer and an aerodyne compact time-of-flight aerosol mass spectrometer. Particle formation and growth events were observed on 20 of the 36 days of sampling, with eight of these events classified as strong. During these events, peaks in the concentration of intermediate and large ions were followed by peaks in the concentration of ammonium and sulfate, which were not observed in the organic fraction. Comparison of days with and without particle formation events revealed that ammonium and sulfate were the dominant species on particle formation days while high concentrations of biomass burning OA inhibited particle growth. Analyses of the degree of particle neutralization lead us to conclude that an excess of ammonium enabled particle formation and growth. In addition, the large ion concentration increased sharply during particle growth, suggesting that during nucleation the neutral gaseous species ammonia and sulfuric acid react to form ammonium and sulfate ions. Overall, we conclude that the mechanism of particle formation and growth involved ammonia and sulfuric acid, with limited input from organics

    Spatial Variation of Particle Number Concentration in School Microscale Environments and Its Impact on Exposure Assessment

    No full text
    It has not yet been established whether the spatial variation of particle number concentration (PNC) within a microscale environment can have an effect on exposure estimation results. In general, the degree of spatial variation within microscale environments remains unclear, since previous studies have only focused on spatial variation within macroscale environments. The aims of this study were to determine the spatial variation of PNC within microscale school environments, in order to assess the importance of the number of monitoring sites on exposure estimation. Furthermore, this paper aims to identify which parameters have the largest influence on spatial variation as well as the relationship between those parameters and spatial variation. Air quality measurements were conducted for two consecutive weeks at each of the 25 schools across Brisbane, Australia. PNC was measured at three sites within the grounds of each school, along with the measurement of meteorological and several other air quality parameters. Traffic density was recorded for the busiest road adjacent to the school. Spatial variation at each school was quantified using coefficient of variation (CV). The portion of CV associated with instrument uncertainty was found to be 0.3, and, therefore, CV was corrected so that only noninstrument uncertainty was analyzed in the data. The median corrected CV (CV<sub>c</sub>) ranged from 0 to 0.35 across the schools, with 12 schools found to exhibit spatial variation. The study determined the number of required monitoring sites at schools with spatial variability and tested the deviation in exposure estimation arising from using only a single site. Nine schools required two measurement sites and three schools required three sites. Overall, the deviation in exposure estimation from using only one monitoring site was as much as 1 order of magnitude. The study also tested the association of spatial variation with wind speed/direction and traffic density, using partial correlation coefficients to identify sources of variation and nonparametric function estimation to quantify the level of variability. Traffic density and road to school wind direction were found to have a positive effect on CV<sub>c</sub> and, therefore, also on spatial variation. Wind speed was found to have a decreasing effect on spatial variation when it exceeded a threshold of 1.5 (m/s), while it had no effect below this threshold. Traffic density had a positive effect on spatial variation and its effect increased until it reached a density of 70 vehicles per five minutes, at which point its effect plateaued and did not increase further as a result of increasing traffic density

    Time series of PM<sub>2.5</sub> concentrations measured during chamber experiments.

    No full text
    <p>a) Cigarette smoke particles measured by M1, M2 and DustTrak. b) Petrol exhaust particles measured by M1, M2 and DustTrak. c) Concrete dust particles measured by M1, M2 and DustTrak. d) Concrete dust particles measured by M1, M2 and APS. The black dotted vertical lines indicate the times at which the particles were introduced into the chamber.</p

    Data obtained from laboratory and field evaluation of Smartphone called the BROAD Life phone

    No full text
    This is data obtained from systematic evaluation of an air pollution measuring smartphone, known as the BROAD Life mobile phone. The output of the mobile phone was bench-marked against the output of six different standard measuring instruments. In the data files, M1 stands for BROAD phone-1 and M2 stands for BROAD phone-2. The standard instruments were designated as follow, Aerosol Particle Analyser as APS, Formalldehyde Analyser as FA, Dusttrak as DT, Optical Particle Counter as OPC, Scanning Mobility Particle Sizer as SMPS and TEOM as TEOM
    corecore