58 research outputs found

    Cosmic microwave background and parametric resonance in reheating

    Get PDF
    The variation of the perturbative 3-curvature parameter, \zeta, is investigated in the period of reheating after inflation. The two-field model used has the inflaton, with an extra scalar field coupled to it, and non-linear effects of both fields are included as well as a slow decay mechanism into the hydrodynamic fluid of the radiation era. Changes in \zeta occur and persist into the succeeding cosmic eras to influence the generation of the cosmic microwave background fluctuations.Comment: 21 pages, 6 figures.Corrects misprinted formula and 2 number

    Evolution of the Schr\"odinger--Newton system for a self--gravitating scalar field

    Full text link
    Using numerical techniques, we study the collapse of a scalar field configuration in the Newtonian limit of the spherically symmetric Einstein--Klein--Gordon (EKG) system, which results in the so called Schr\"odinger--Newton (SN) set of equations. We present the numerical code developed to evolve the SN system and topics related, like equilibrium configurations and boundary conditions. Also, we analyze the evolution of different initial configurations and the physical quantities associated to them. In particular, we readdress the issue of the gravitational cooling mechanism for Newtonian systems and find that all systems settle down onto a 0--node equilibrium configuration.Comment: RevTex file, 19 pages, 26 eps figures. Minor changes, matches version to appear in PR

    Inflationary models inducing non-Gaussian metric fluctuations

    Get PDF
    We construct explicit models of multi-field inflation in which the primordial metric fluctuations do not necessarily obey Gaussian statistics. These models are realizations of mechanisms in which non-Gaussianity is first generated by a light scalar field and then transferred into curvature fluctuations. The probability distribution functions of the metric perturbation at the end of inflation are computed. This provides a guideline for designing strategies to search for non-Gaussian signals in future CMB and large scale structure surveys.Comment: 4 pages, 7 figure

    The Sachs-Wolfe Effect: Gauge Independence and a General Expression

    Full text link
    In this paper we address two points concerning the Sachs-Wolfe effect: (i) the gauge independence of the observable temperature anisotropy, and (ii) a gauge-invariant expression of the effect considering the most general situation of hydrodynamic perturbations. The first result follows because the gauge transformation of the temperature fluctuation at the observation event only contributes to the isotropic temperature change which, in practice, is absorbed into the definition of the background temperature. Thus, we proceed without fixing the gauge condition, and express the Sachs-Wolfe effect using the gauge-invariant variables.Comment: 5 pages, closer to published versio

    Cosmological parameter estimation and the inflationary cosmology

    Get PDF
    We consider approaches to cosmological parameter estimation in the inflationary cosmology, focussing on the required accuracy of the initial power spectra. Parametrizing the spectra, for example by power-laws, is well suited to testing the inflationary paradigm but will only correctly estimate cosmological parameters if the parametrization is sufficiently accurate, and we investigate conditions under which this is achieved both for present data and for upcoming satellite data. If inflation is favoured, reliable estimation of its physical parameters requires an alternative approach adopting its detailed predictions. For slow-roll inflation, we investigate the accuracy of the predicted spectra at first and second order in the slow-roll expansion (presenting the complete second-order corrections for the tensors for the first time). We find that within the presently-allowed parameter space, there are regions where it will be necessary to include second-order corrections to reach the accuracy requirements of MAP and Planck satellite data. We end by proposing a data analysis pipeline appropriate for testing inflation and for cosmological parameter estimation from high-precision data.Comment: 15 pages RevTeX file with figures incorporated. Slow-roll inflation module for use with the CAMB program can be found at http://astronomy.cpes.susx.ac.uk/~sleach/inflation/ This version corrects a typo in the definition of z_S (after Eq.1) and supersedes the journal versio

    Illusions of general relativity in Brans-Dicke gravity

    Get PDF
    Contrary to common belief, the standard tenet of Brans-Dicke theory reducing to general relativity when omega tends to infinity is false if the trace of the matter energy-momentum tensor vanishes. The issue is clarified in a new approach using conformal transformations. The otherwise unaccountable limiting behavior of Brans-Dicke gravity is easily understood in terms of the conformal invariance of the theory when the sources of gravity have radiation-like properties. The rigorous computation of the asymptotic behavior of the Brans-Dicke scalar field is straightforward in this new approach.Comment: 16 pages, LaTeX, to appear in Physical Review

    Adiabatic and Isocurvature Perturbations from Inflation: Power Spectra and Consistency Relations

    Get PDF
    We study adiabatic and isocurvature perturbations produced during a period of cosmological inflation. We compute the power spectra and cross spectra of the curvature and isocurvature modes, as well as the tensor perturbation spectrum in terms of the slow-roll parameters. We provide two consistency relations for the amplitudes and spectral indices of the corresponding power spectra. These relations represent a definite prediction and a test of inflationary models which should be adopted when studying cosmological perturbations through the Cosmic Microwave Background in forthcoming satellite experiments.Comment: 25 pages, LaTeX fil

    Inflation and late time acceleration in braneworld cosmological models with varying brane tension

    Get PDF
    Braneworld models with variable brane tension λ\lambda introduce a new degree of freedom that allows for evolving gravitational and cosmological constants, the latter being a natural candidate for dark energy. We consider a thermodynamic interpretation of the varying brane tension models, by showing that the field equations with variable λ\lambda can be interpreted as describing matter creation in a cosmological framework. The particle creation rate is determined by the variation rate of the brane tension, as well as by the brane-bulk energy-matter transfer rate. We investigate the effect of a variable brane tension on the cosmological evolution of the Universe, in the framework of a particular model in which the brane tension is an exponentially dependent function of the scale factor. The resulting cosmology shows the presence of an initial inflationary expansion, followed by a decelerating phase, and by a smooth transition towards a late accelerated de Sitter type expansion. The varying brane tension is also responsible for the generation of the matter in the Universe (reheating period). The physical constraints on the model parameters, resulted from the observational cosmological data, are also investigated.Comment: 25 pages, 8 figures, accepted for publication in European Physical Journal

    Double Inflation in Supergravity and the Large Scale Structure

    Full text link
    The cosmological implication of a double inflation model with hybrid + new inflations in supergravity is studied. The hybrid inflation drives an inflaton for new inflation close to the origin through supergravity effects and new inflation naturally occurs. If the total e-fold number of new inflation is smaller than 60\sim 60, both inflations produce cosmologically relevant density fluctuations. Both cluster abundances and galaxy distributions provide strong constraints on the parameters in the double inflation model assuming Ω0=1\Omega_0=1 standard cold dark matter scenario. The future satellite experiments to measure the angular power spectrum of the cosmic microwave background will make a precise determination of the model parameters possible.Comment: 19 pages (RevTeX file

    Interacting New Agegraphic Dark Energy in a Cyclic Universe

    Full text link
    The main goal of this work is investigation of NADE in the cyclic universe scenario. Since, cyclic universe is explained by a phantom phase (ω<1\omega<-1), it is shown when there is no interaction between matter and dark energy, ADE and NADE do not produce a phantom phase, then can not describe cyclic universe. Therefore, we study interacting models of ADE and NADE in the modified Friedmann equation. We find out that, in the high energy regime, which it is a necessary part of cyclic universe evolution, only NADE can describe this phantom phase era for cyclic universe. Considering deceleration parameter tells us that the universe has a deceleration phase after an acceleration phase, and NADE is able to produce a cyclic universe. Also it is found valuable to study generalized second law of thermodynamics. Since the loop quantum correction is taken account in high energy regime, it may not be suitable to use standard treatment of thermodynamics, so we turn our attention to the result of \citep{29}, which the authors have studied thermodynamics in loop quantum gravity, and we show that which condition can satisfy generalized second law of thermodynamics.Comment: 8 pages, 3 figure
    corecore