3,322 research outputs found
Boson stars in the centre of galaxies?
We investigate the possible gravitational redshift values for boson stars
with a self-interaction, studying a wide range of possible masses. We find a
limiting value of z_lim \simeq 0.687 for stable boson star configurations. We
can exclude the direct observation of boson stars. X-ray spectroscopy is
perhaps the most interesting possibility
Reconstructing the Inflaton Potential
A review is presented of recent work by the authors concerning the use of
large scale structure and microwave background anisotropy data to determine the
potential of the inflaton field. The importance of a detection of the
stochastic gravitational wave background is emphasised, and some preliminary
new results of tests of the method on simulated data sets with uncertainties
are described. (Proceedings of ``Unified Symmetry in the Small and in the
Large'', Coral Gables, 1994)Comment: 13 pages, uuencoded postscript file with figures included (LaTeX file
available from ARL), FERMILAB-Conf 94/189
Fluorine gas as a cleaning agent for Apollo bulk-sample containers
A technique has been developed for cleaning Apollo bulk sample containers using fluorine gas as the cleaning agent
Running-mass models of inflation, and their observational constraints
If the inflaton sector is described by softly broken supersymmetry, and the
inflaton has unsuppressed couplings, the inflaton mass will run strongly with
scale. Four types of model are possible. The prediction for the spectral index
involves two parameters, while the COBE normalization involves a third, all of
them calculable functions of the relevant masses and couplings. A crude
estimate is made of the region of parameter space allowed by present
observation.Comment: Latex file, 20 pages, 11 figures, uses epsf.sty. Comment on the
observation of the spectral index scale dependence added; Fig. 3-6 improve
Triple unification of inflation, dark matter, and dark energy using a single field
We construct an explicit scenario whereby the same material driving inflation
in the early Universe can comprise dark matter in the present Universe, using a
simple quadratic potential. Following inflation and preheating, the density of
inflaton/dark matter particles is reduced to the observed level by a period of
thermal inflation, of a duration already invoked in the literature for other
reasons. Within the context of the string landscape, one can further argue for
a non-zero vacuum energy of this field, thus unifying inflation, dark matter
and dark energy into a single fundamental field.Comment: 5 pages RevTeX with 3 figures incorporate
Gamma-rays from ultracompact minihalos: potential constraints on the primordial curvature perturbation
Ultracompact minihalos (UCMHs) are dense dark matter structures which can
form from large density perturbations shortly after matter-radiation equality.
If dark matter is in the form of Weakly Interacting Massive Particles (WIMPs),
then UCMHs may be detected via their gamma-ray emission. We investigate how the
{\em{Fermi}} satellite could constrain the abundance of UCMHs and place limits
on the power spectrum of the primordial curvature perturbation. Detection by
{\em Fermi} would put a lower limit on the UCMH halo fraction. The smallest
detectable halo fraction, , is for . If gamma-ray emission from UCMHs is not detected, an
upper limit can be placed on the halo fraction. The bound is tightest, , for . The
resulting upper limit on the power spectrum of the primordial curvature
perturbation in the event of non-detection is in the range on scales . This is substantially tighter than the existing constraints from
primordial black hole formation on these scales, however it assumes that dark
matter is in the form of WIMPs and UCMHs are not disrupted during the formation
of the Milky Way halo.Comment: 5 pages, 2 figures, version to appear in Phys. Rev. D, minor change
Inflation, dark matter and dark energy in the string landscape
We consider the conditions needed to unify the description of dark matter,
dark energy and inflation in the context of the string landscape. We find that
incomplete decay of the inflaton field gives the possibility that a single
field is responsible for all three phenomena. By contrast, unifying dark matter
and dark energy into a single field, separate from the inflaton, appears rather
difficult.Comment: 4 pages RevTex4. Updated to include a toy model of reheating. Matches
version accepted by Phys Rev Let
Large-Scale Magnetic Fields, Dark Energy and QCD
Cosmological magnetic fields are being observed with ever increasing
correlation lengths, possibly reaching the size of superclusters, therefore
disfavouring the conventional picture of generation through primordial seeds
later amplified by galaxy-bound dynamo mechanisms. In this paper we put forward
a fundamentally different approach that links such large-scale magnetic fields
to the cosmological vacuum energy. In our scenario the dark energy is due to
the Veneziano ghost (which solves the problem in QCD). The Veneziano
ghost couples through the triangle anomaly to the electromagnetic field with a
constant which is unambiguously fixed in the standard model. While this
interaction does not produce any physical effects in Minkowski space, it
triggers the generation of a magnetic field in an expanding universe at every
epoch. The induced energy of the magnetic field is thus proportional to
cosmological vacuum energy: , hence acting as a source for the magnetic energy
. The corresponding numerical estimate leads to a magnitude in the
nG range. There are two unique and distinctive predictions of our proposal: an
uninterrupted active generation of Hubble size correlated magnetic fields
throughout the evolution of the universe; the presence of parity violation on
the enormous scales , which apparently has been already observed in CMB.
These predictions are entirely rooted into the standard model of particle
physics.Comment: jhep style, 22 pages, v2 with updated estimates and extended
discussion on parity violation, v3 as published (references updated
- …
