52 research outputs found

    Expression, intracellular targeting and purification of HIV Nef variants in tobacco cells

    Get PDF
    Background Plants may represent excellent alternatives to classical heterologous protein expression systems, especially for the production of biopharmaceuticals and vaccine components. Modern vaccines are becoming increasingly complex, with the incorporation of multiple antigens. Approaches towards developing an HIV vaccine appear to confirm this, with a combination of candidate antigens. Among these, HIV-Nef is considered a promising target for vaccine development because immune responses directed against this viral protein could help to control the initial steps of viral infection and to reduce viral loads and spreading. Two isoforms of Nef protein can be found in cells: a full-length N-terminal myristoylated form (p27, 27 kDa) and a truncated form (p25, 25 kDa). Here we report the expression and purification of HIV Nef from transgenic tobacco. Results We designed constructs to direct the expression of p25 and p27 Nef to either the cytosol or the secretory pathway. We tested these constructs by transient expression in tobacco protoplasts. Cytosolic Nef polypeptides are correctly synthesised and are stable. The same is not true for Nef polypeptides targeted to the secretory pathway by virtue of a signal peptide. We therefore generated transgenic plants expressing cytosolic, full length or truncated Nef. Expression levels were variable, but in some lines they averaged 0.7% of total soluble proteins. Hexahistidine-tagged Nef was easily purified from transgenic tissue in a one-step procedure. Conclusion We have shown that transient expression can help to rapidly determine the best cellular compartment for accumulation of a recombinant protein. We have successfully expressed HIV Nef polypeptides in the cytosol of transgenic tobacco plants. The proteins can easily be purified from transgenic tissue

    Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in vivo under strong light

    Get PDF
    BACKGROUND: Lutein is the most abundant xanthophyll in the photosynthetic apparatus of higher plants. It binds to site L1 of all Lhc proteins, whose occupancy is indispensable for protein folding and quenching chlorophyll triplets. Thus, the lack of a visible phenotype in mutants lacking lutein has been surprising. RESULTS: We have re-assessed the lut2.1 phenotypes through biochemical and spectroscopic methods. Lhc proteins from the lut2.1 mutant compensate the lack of lutein by binding violaxanthin in sites L1 and L2. This substitution reduces the capacity for regulatory mechanisms such as NPQ, reduces antenna size, induces the compensatory synthesis of Antheraxanthin + Zeaxanthin, and prevents the trimerization of LHCII complexes. In vitro reconstitution shows that the lack of lutein per se is sufficient to prevent trimerization. lut2.1 showed a reduced capacity for state I – state II transitions, a selective degradation of Lhcb1 and 2, and a higher level of photodamage in high light and/or low temperature, suggesting that violaxanthin cannot fully restore chlorophyll triplet quenching. In vitro photobleaching experiments and time-resolved spectroscopy of carotenoid triplet formation confirmed this hypothesis. The npq1lut2.1 double mutant, lacking both zeaxanthin and lutein, is highly susceptible to light stress. CONCLUSION: Lutein has the specific property of quenching harmful (3)Chl* by binding at site L1 of the major LHCII complex and of other Lhc proteins of plants, thus preventing ROS formation. Substitution of lutein by violaxanthin decreases the efficiency of (3)Chl* quenching and causes higher ROS yield. The phenotype of lut2.1 mutant in low light is weak only because rescuing mechanisms of photoprotection, namely zeaxanthin synthesis, compensate for the ROS production. We conclude that zeaxanthin is effective in photoprotection of plants lacking lutein due to the multiple effects of zeaxanthin in photoprotection, including ROS scavenging and direct quenching of Chl fluorescence by binding to the L2 allosteric site of Lhc proteins

    In planta production of two peptides of the Classical Swine Fever Virus (CSFV) E2 glycoprotein fused to the coat protein of potato virus X

    Get PDF
    BACKGROUND: Classical Swine Fever (CSFV) is one of the most important viral infectious diseases affecting wild boars and domestic pigs. The etiological agent of the disease is the CSF virus, a single stranded RNA virus belonging to the family Flaviviridae. All preventive measures in domestic pigs have been focused in interrupting the chain of infection and in avoiding the spread of CSFV within wild boars as well as interrupting transmission from wild boars to domestic pigs. The use of plant based vaccine against CSFV would be advantageous as plant organs can be distributed without the need of particular treatments such as refrigeration and therefore large areas, populated by wild animals, could be easily covered. RESULTS: We report the in planta production of peptides of the classical swine fever (CSF) E2 glycoprotein fused to the coat protein of potato virus X. RT-PCR studies demonstrated that the peptide encoding sequences are correctly retained in the PVX construct after three sequential passage in Nicotiana benthamiana plants. Sequence analysis of RT-PCR products confirmed that the epitope coding sequences are replicated with high fidelity during PVX infection. Partially purified virions were able to induce an immune response in rabbits. CONCLUSION: Previous reports have demonstrated that E2 synthetic peptides can efficiently induce an immunoprotective response in immunogenized animals. In this work we have showed that E2 peptides can be expressed in planta by using a modified PVX vector. These results are particularly promising for designing strategies for disease containment in areas inhabited by wild boars

    Plant Molecular Farming as a Strategy Against COVID-19 - The Italian Perspective

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed more than 37,000 people in Italy and has caused widespread socioeconomic disruption. Urgent measures are needed to contain and control the virus, particularly diagnostic kits for detection and surveillance, therapeutics to reduce mortality among the severely affected, and vaccines to protect the remaining population. Here we discuss the potential role of plant molecular farming in the rapid and scalable supply of protein antigens as reagents and vaccine candidates, antibodies for virus detection and passive immunotherapy, other therapeutic proteins, and virus-like particles as novel vaccine platforms. We calculate the amount of infrastructure and production capacity needed to deal with predictable subsequent waves of COVID-19 in Italy by pooling expertise in plant molecular farming, epidemiology and the Italian health system. We calculate the investment required in molecular farming infrastructure that would enable us to capitalize on this technology, and provide a roadmap for the development of diagnostic reagents and biopharmaceuticals using molecular farming in plants to complement production methods based on the cultivation of microbes and mammalian cells

    A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows

    Get PDF
    We present a framework for characterizing the spatiotemporal power spectrum of the variability expected from the horizon-scale emission structure around supermassive black holes, and we apply this framework to a library of general relativistic magnetohydrodynamic (GRMHD) simulations and associated general relativistic ray-traced images relevant for Event Horizon Telescope (EHT) observations of Sgr A*. We find that the variability power spectrum is generically a red-noise process in both the temporal and spatial dimensions, with the peak in power occurring on the longest timescales and largest spatial scales. When both the time-averaged source structure and the spatially integrated light-curve variability are removed, the residual power spectrum exhibits a universal broken power-law behavior. On small spatial frequencies, the residual power spectrum rises as the square of the spatial frequency and is proportional to the variance in the centroid of emission. Beyond some peak in variability power, the residual power spectrum falls as that of the time-averaged source structure, which is similar across simulations; this behavior can be naturally explained if the variability arises from a multiplicative random field that has a steeper high-frequency power-law index than that of the time-averaged source structure. We briefly explore the ability of power spectral variability studies to constrain physical parameters relevant for the GRMHD simulations, which can be scaled to provide predictions for black holes in a range of systems in the optically thin regime. We present specific expectations for the behavior of the M87* and Sgr A* accretion flows as observed by the EHT

    Resolving the inner parsec of the blazar J1924–2914 with the Event Horizon Telescope

    Get PDF
    Rest of authors: Ikeda, Shiro; Impellizzeri, C. M. Violette; Inoue, Makoto; James, David J.; Jannuzi, Buell T.; Jeter, Britton; Jiang, Wu; Jimenez-Rosales, Alejandra; Johnson, Michael D.; Joshi, Abhishek, V; Jung, Taehyun; Karami, Mansour; Karuppusamy, Ramesh; Kawashima, Tomohisa; Keating, Garrett K.; Kettenis, Mark; Kim, Dong-Jin; Kim, Jae-Young; Kim, Jongsoo; Kim, Junhan; Kino, Motoki; Koay, Jun Yi; Kocherlakota, Prashant; Kofuji, Yutaro; Koch, Patrick M.; Koyama, Shoko; Kramer, Carsten; Kramer, Michael; Kuo, Cheng-Yu; La Bella, Noemi; Lauer, Tod R.; Lee, Daeyoung; Lee, Sang-Sung; Leung, Po Kin; Levis, Aviad; Li, Zhiyuan; Lindahl, Greg; Lindqvist, Michael; Liu, Kuo; Liuzzo, Elisabetta; Lo, Wen-Ping; Lobanov, Andrei P.; Lonsdale, Colin; Mao, Jirong; Marchili, Nicola; Markoff, Sera; Marrone, Daniel P.; Marscher, Alan P.; Matsushita, Satoki; Matthews, Lynn D.; Medeiros, Lia; Menten, Karl M.; Michalik, Daniel; Mizuno, Izumi; Mizuno, Yosuke; Moran, James M.; Mueller, Cornelia; Mus, Alejandro; Musoke, Gibwa; Myserlis, Ioannis; Nadolski, Andrew; Nagai, Hiroshi; Nagar, Neil M.; Nakamura, Masanori; Narayan, Ramesh; Narayanan, Gopal; Natarajan, Iniyan; Nathanail, Antonios; Neilsen, Joey; Neri, Roberto; Ni, Chunchong; Noutsos, Aristeidis; Nowak, Michael A.; Oh, Junghwan; Okino, Hiroki; Olivares, Hector; Ortiz-Leon, Gisela N.; Oyama, Tomoaki; Ozel, Feryal; Palumbo, Daniel C. M.; Paraschos, Georgios Filippos; Park, Jongho; Parsons, Harriet; Patel, Nimesh; Pen, Ue-Li; Pietu, Vincent; Plambeck, Richard; PopStefanija, Aleksandar; Porth, Oliver; Potzl, Felix M.; Prather, Ben; Preciado-Lopez, Jorge A.; Psaltis, Dimitrios; Pu, Hung-Yi; Rao, Ramprasad; Rawlings, Mark G.; Raymond, Alexander W.; Rezzolla, Luciano; Ricarte, Angelo; Ripperda, Bart; Roelofs, Freek; Rogers, Alan; Ros, Eduardo; Romero-Canizales, Cristina; Roshanineshat, Arash; Rottmann, Helge; Roy, Alan L.; Ruiz, Ignacio; Ruszczyk, Chet; Rygl, Kazi L. J.; Sanchez, Salvador; Sanchez-Arguelles, David; Sanchez-Portal, Miguel; Sasada, Mahito; Satapathy, Kaushik; Savolainen, Tuomas; Schloerb, F. Peter; Schuster, Karl-Friedrich; Shao, Lijing; Shen, Zhiqiang; Small, Des; Sohn, Bong Won; SooHoo, Jason; Souccar, Kamal; Sun, He; Tazaki, Fumie; Tetarenko, Alexandra J.; Tilanus, Remo P. J.; Titus, Michael; Torne, Pablo; Trent, Tyler; Trippe, Sascha; van Bemmel, Ilse; van Langevelde, Huib Jan; van Rossum, Daniel R.; Vos, Jesse; Wagner, Jan; Ward-Thompson, Derek; Wardle, John; Weintroub, Jonathan; Wex, Norbert; Wharton, Robert; Wiik, Kaj; Witzel, Gunther; Wondrak, Michael; Wong, George N.; Wu, Qingwen; Yamaguchi, Paul; Yoon, Doosoo; Young, Andre; Young, Ken; Younsi, Ziri; Yuan, Feng; Yuan, Ye-Fei; Zensus, J. Anton; Zhang, Shuo; Zhao, Shan-Shan.The blazar J1924–2914 is a primary Event Horizon Telescope (EHT) calibrator for the Galactic center’s black hole Sagittarius A*. Here we present the first total and linearly polarized intensity images of this source obtained with the unprecedented 20 μas resolution of the EHT. J1924–2914 is a very compact flat-spectrum radio source with strong optical variability and polarization. In April 2017 the source was observed quasi-simultaneously with the EHT (April 5–11), the Global Millimeter VLBI Array (April 3), and the Very Long Baseline Array (April 28), giving a novel view of the source at four observing frequencies, 230, 86, 8.7, and 2.3 GHz. These observations probe jet properties from the subparsec to 100 pc scales. We combine the multifrequency images of J1924–2914 to study the source morphology. We find that the jet exhibits a characteristic bending, with a gradual clockwise rotation of the jet projected position angle of about 90° between 2.3 and 230 GHz. Linearly polarized intensity images of J1924–2914 with the extremely fine resolution of the EHT provide evidence for ordered toroidal magnetic fields in the blazar compact core.We thank the anonymous reviewer for their thoughtful and helpful comments. The Event Horizon Telescope Collaboration thanks the following organizations and programs: the Academy of Finland (projects 274477, 284495, 312496, 315721); the Agencia Nacional de Investigación y Desarrollo (ANID), Chile via NCN19_058 (TITANs) and Fondecyt 3190878, the Alexander von Humboldt Stiftung; an Alfred P. Sloan Research Fellowship; Allegro, the European ALMA Regional Centre node in the Netherlands, the NL astronomy research network NOVA and the astronomy institutes of the University of Amsterdam, Leiden University and Radboud University; the black hole Initiative at Harvard University, through a grant (60477) from the John Templeton Foundation; the China Scholarship Council; Consejo Nacional de Ciencia y Tecnología (CONACYT, Mexico, projects U0004-246083, U0004- 259839, F0003-272050, M0037-279006, F0003-281692, 104497, 275201, 263356); the Delaney Family via the Delaney Family John A. Wheeler Chair at Perimeter Institute; Dirección General de Asuntos del Personal Académico-Universidad Nacional Autónoma de México (DGAPA-UNAM, projects IN112417 and IN112820); the European Research Council Synergy Grant “BlackHoleCam: Imaging the Event Horizon of Black Holes” (grant 610058); the Generalitat Valenciana postdoctoral grant APOSTD/2018/177 and GenT Program (project CIDEGENT/2018/021); MICINN Research Project PID2019-108995GB-C22; the Gordon and Betty Moore Foundation (grant GBMF-3561); the Istituto Nazionale di Fisica Nucleare (INFN) sezione di Napoli, iniziative specifiche TEONGRAV; the International Max Planck Research School for Astronomy and Astrophysics at the Universities of Bonn and Cologne; Joint Princeton/Flatiron and Joint Columbia/ Flatiron Postdoctoral Fellowships, research at the Flatiron Institute is supported by the Simons Foundation; the Japanese Government (Monbukagakusho: MEXT) Scholarship; the Japan Society for the Promotion of Science (JSPS) Grant-in- Aid for JSPS Research Fellowship (JP17J08829); the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS, grants QYZDJ-SSW-SLH057, QYZDJSSWSYS008, ZDBS-LY-SLH011); the Leverhulme Trust Early Career Research Fellowship; the Max-Planck-Gesellschaft (MPG); the Max Planck Partner Group of the MPG and the CAS; the MEXT/JSPS KAKENHI (grants 18KK0090, JP18K13594, JP18K03656, JP18H03721, 18K03709, 18H01245, 25120007); the Malaysian Fundamental Research Grant Scheme (FRGS) FRGS/1/2019/STG02/UM/02/6; the MIT International Science and Technology Initiatives (MISTI) Funds; the Ministry of Science and Technology (MOST) of Taiwan (105-2112-M-001-025-MY3, 106-2112-M-001-011, 106-2119- M-001-027, 107-2119-M-001-017, 107-2119-M- 001-020, 107-2119-M-110-005, 108-2112-M-001-048, and 109-2124-M-001-005); the National Aeronautics and Space Administration (NASA, Fermi Guest Investigator grant 80NSSC20K1567, NASA Astrophysics Theory Program grant 80NSSC20K0527, NASA NuSTAR award 80NSSC20K0645); the National Institute of Natural Sciences (NINS) of Japan; the National Key Research and Development Program of China (grant 2016YFA0400704, 2016YFA0400702); the National Science Foundation (NSF, grants AST-0096454, AST- 0352953, AST-0521233, AST-0705062, AST-0905844, AST- 0922984, AST-1126433, AST-1140030, DGE-1144085, AST- 1207704, AST-1207730, AST-1207752, MRI-1228509, OPP- 1248097, AST-1310896, AST-1555365,AST-1615796, AST- 1715061, AST-1716327, AST-1903847,AST-2034306); the Natural Science Foundation of China (grants 11573051, 11633006, 11650110427, 10625314, 11721303, 11725312, 11933007, 11991052, 11991053); a fellowship of China Postdoctoral Science Foundation (2020M671266); the Natural Sciences and Engineering Research Council of Canada (NSERC, including a Discovery Grant and the NSERC Alexander Graham Bell Canada Graduate Scholarships-Doctoral Program); the National Youth Thousand Talents Program of China; the National Research Foundation of Korea (the Global PhD Fellowship Grant: grants NRF- 2015H1A2A1033752, 2015- R1D1A1A01056807, the Korea Research Fellowship Program: NRF-2015H1D3A1066561, Basic Research Support Grant 2019R1F1A1059721); the Netherlands Organization for Scientific Research (NWO) VICI award (grant 639.043.513) and Spinoza Prize SPI 78-409; the New Scientific Frontiers with Precision Radio Interferometry Fellowship awarded by the South African Radio Astronomy Observatory (SARAO), which is a facility of the National Research Foundation (NRF), an agency of the Department of Science and Technology (DST) of South Africa; the Onsala Space Observatory (OSO) national infrastructure, for the provisioning of its facilities/observational support (OSO receives funding through the Swedish Research Council under grant 2017-00648) the Perimeter Institute for Theoretical Physics (research at Perimeter Institute is supported by the Government of Canada through the Department of Innovation, Science and Economic Development and by the Province of Ontario through the Ministry of Research, Innovation and Science); the Spanish Ministerio de Economía y Competitividad (grants PGC2018-098915-B-C21, AYA2016-80889-P, PID2019-108995GB-C21); the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award for the Instituto de Astrofísica de Andalucía (SEV-2017-0709); the Toray Science Foundation; the Consejería de Economía, Conocimiento, Empresas y Universidad of the Junta de Andalucía (grant P18-FR-1769), the Consejo Superior de Investigaciones Científicas (grant 2019AEP112); the US Department of Energy (USDOE) through the Los Alamos National Laboratory (operated by Triad National Security, LLC, for the National Nuclear Security Administration of the USDOE (Contract 89233218CNA000001); the European Unionʼs Horizon 2020 research and innovation program under grant agreement No 730562 RadioNet; ALMA North America Development Fund; the Academia Sinica; Chandra DD7- 18089X and TM6-17006X; the GenT Program (Generalitat Valenciana) Project CIDEGENT/2018/021. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), supported by NSF grant ACI-1548562, and CyVerse, supported by NSF grants DBI-0735191, DBI-1265383, and DBI-1743442. XSEDE Stampede2 resource at TACC was allocated through TG-AST170024 and TG-AST080026N. XSEDE JetStream resource at PTI and TACC was allocated through AST170028. The simulations were performed in part on the SuperMUC cluster at the LRZ in Garching, on the LOEWE cluster in CSC in Frankfurt, and on the HazelHen cluster at the HLRS in Stuttgart. This research was enabled in part by support provided by Compute Ontario (http://computeontario.ca), Calcul Quebec (http://www.calculquebec.ca) and Compute Canada (http://www.computecanada.ca). We thank the staff at the participating observatories, correlation centers, and institutions for their enthusiastic support. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2016.1.01154.V and ADS/JAO.ALMA2016.1.00413.V. ALMA is a partnership of the European Southern Observatory (ESO; Europe, representing its member states), NSF, and National Institutes of Natural Sciences of Japan, together with National Research Council (Canada), Ministry of Science and Technology (MOST; Taiwan), Academia Sinica Institute of Astronomy and Astrophysics (ASIAA; Taiwan), and Korea Astronomy and Space Science Institute (KASI; Republic of Korea), in cooperationwith the Republic of Chile. The Joint ALMA Observatory is operated by ESO, Associated Universities, Inc. (AUI)/NRAO, and the National Astronomical Observatory of Japan (NAOJ). The NRAO is a facility of the NSF operated under cooperative agreement by AUI. APEX is a collaboration between the Max- Planck-Institut für Radioastronomie (Germany), ESO, and the Onsala Space Observatory (Sweden). The SMA is a joint project between the SAO and ASIAA and is funded by the Smithsonian Institution and the Academia Sinica. The JCMT is operated by the East Asian Observatory on behalf of the NAOJ, ASIAA, and KASI, as well as the Ministry of Finance of China, Chinese Academy of Sciences, and the National Key R&D Program (No. 2017YFA0402700) of China. Additional funding support for the JCMT is provided by the Science and Technologies Facility Council (UK) and participating universities in the UK and Canada. The LMT is a project operated by the Instituto Nacional de Astrófisica, Óptica, y Electrónica (Mexico) and the University of Massachusetts at Amherst (USA). The IRAM 30 m telescope on Pico Veleta, Spain is operated by IRAM and supported by CNRS (Centre National de la Recherche Scientifique, France), MPG (Max-Planck- Gesellschaft, Germany) and IGN (Instituto Geográfico Nacional, Spain). The SMT is operated by the Arizona Radio Observatory, a part of the Steward Observatory of the University of Arizona, with financial support of operations from the State of Arizona and financial support for instrumentation development from the NSF. Support for SPT participation in the EHT is provided by the National Science Foundation through award OPP-1852617 to the University of Chicago. Partial support is also provided by the Kavli Institute of Cosmological Physics at the University of Chicago. The SPT hydrogen maser was provided on loan from the GLT, courtesy of ASIAA. The EHTC has received generous donations of FPGA chips from Xilinx Inc., under the Xilinx University Program. The EHTC has benefited from technology shared under open-source license by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER). The EHT project is grateful to T4Science and Microsemi for their assistance with Hydrogen Masers. This research has made use of NASAʼs Astrophysics Data System. We gratefully acknowledge the support provided by the extended staff of the ALMA, both from the inception of the ALMA Phasing Project through the observational campaigns of 2017 and 2018. We would like to thank A. Deller and W. Brisken for EHT-specific support with the use of DiFX. We acknowledge the significance that Maunakea, where the SMA and JCMT EHT stations are located, has for the indigenous Hawaiian people. We also thank Alexandra Elbakyan for her contributions to the open science initiative. This research has made use of data obtained with the Global Millimeter VLBI Array (GMVA), coordinated by the VLBI group at the Max-Planck-Institut für Radioastronomie (MPIfR). The GMVA consists of telescopes operated by MPIfR, IRAM, Onsala, Metsahovi, Yebes, the Korean VLBI Network, the Green Bank Observatory, and the Very Long Baseline Array (VLBA). The VLBA and the GBT are facilities of the National Science Foundation under cooperative agreement by Associated Universities, Inc. The data were correlated at the DiFX correlator of the MPIfR in Bonn, Germany. We thank the National Science Foundation (awards OISE-1743747, AST-1816420, AST-1716536, AST- 1440254, AST-1935980) and the Gordon and Betty Moore Foundation (GBMF-5278) for financial support of this work. Support for this work was also provided by the NASA Hubble Fellowship grant HST-HF2-51431.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555.http://iopscience.iop.org/0004-637Xam2023Physic

    The Event Horizon Telescope Image of the Quasar NRAO 530

    Get PDF
    We report on the observations of the quasar NRAO 530 with the Event Horizon Telescope (EHT) on 2017 April 5−7, when NRAO 530 was used as a calibrator for the EHT observations of Sagittarius A*. At z = 0.902, this is the most distant object imaged by the EHT so far. We reconstruct the first images of the source at 230 GHz, at an unprecedented angular resolution of ∼20 μas, both in total intensity and in linear polarization (LP). We do not detect source variability, allowing us to represent the whole data set with static images. The images reveal a bright feature located on the southern end of the jet, which we associate with the core. The feature is linearly polarized, with a fractional polarization of ∼5%–8%, and it has a substructure consisting of two components. Their observed brightness temperature suggests that the energy density of the jet is dominated by the magnetic field. The jet extends over 60 μas along a position angle ∼ −28°. It includes two features with orthogonal directions of polarization (electric vector position angle), parallel and perpendicular to the jet axis, consistent with a helical structure of the magnetic field in the jet. The outermost feature has a particularly high degree of LP, suggestive of a nearly uniform magnetic field. Future EHT observations will probe the variability of the jet structure on microarcsecond scales, while simultaneous multiwavelength monitoring will provide insight into the high-energy emission origin

    First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass

    Get PDF
    In this paper we quantify the temporal variability and image morphology of the horizon-scale emission from Sgr A*, as observed by the EHT in 2017 April at a wavelength of 1.3 mm. We find that the Sgr A* data exhibit variability that exceeds what can be explained by the uncertainties in the data or by the effects of interstellar scattering. The magnitude of this variability can be a substantial fraction of the correlated flux density, reaching ∼100% on some baselines. Through an exploration of simple geometric source models, we demonstrate that ring-like morphologies provide better fits to the Sgr A* data than do other morphologies with comparable complexity. We develop two strategies for fitting static geometric ring models to the time-variable Sgr A* data; one strategy fits models to short segments of data over which the source is static and averages these independent fits, while the other fits models to the full data set using a parametric model for the structural variability power spectrum around the average source structure. Both geometric modeling and image-domain feature extraction techniques determine the ring diameter to be 51.8 ± 2.3 μas (68% credible intervals), with the ring thickness constrained to have an FWHM between ∼30% and 50% of the ring diameter. To bring the diameter measurements to a common physical scale, we calibrate them using synthetic data generated from GRMHD simulations. This calibration constrains the angular size of the gravitational radius to be 4.8−0.7+1.4 μas, which we combine with an independent distance measurement from maser parallaxes to determine the mass of Sgr A* to be 4.0−0.6+1.1×106 M ⊙

    Characterizing and Mitigating Intraday Variability: Reconstructing Source Structure in Accreting Black Holes with mm-VLBI

    Get PDF
    The extraordinary physical resolution afforded by the Event Horizon Telescope has opened a window onto the astrophysical phenomena unfolding on horizon scales in two known black holes, M87* and Sgr A*. However, with this leap in resolution has come a new set of practical complications. Sgr A* exhibits intraday variability that violates the assumptions underlying Earth aperture synthesis, limiting traditional image reconstruction methods to short timescales and data sets with very sparse (u, v) coverage. We present a new set of tools to detect and mitigate this variability. We develop a data-driven, model-agnostic procedure to detect and characterize the spatial structure of intraday variability. This method is calibrated against a large set of mock data sets, producing an empirical estimator of the spatial power spectrum of the brightness fluctuations. We present a novel Bayesian noise modeling algorithm that simultaneously reconstructs an average image and statistical measure of the fluctuations about it using a parameterized form for the excess variance in the complex visibilities not otherwise explained by the statistical errors. These methods are validated using a variety of simulated data, including general relativistic magnetohydrodynamic simulations appropriate for Sgr A* and M87*. We find that the reconstructed source structure and variability are robust to changes in the underlying image model. We apply these methods to the 2017 EHT observations of M87*, finding evidence for variability across the EHT observing campaign. The variability mitigation strategies presented are widely applicable to very long baseline interferometry observations of variable sources generally, for which they provide a data-informed averaging procedure and natural characterization of inter-epoch image consistency

    First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric

    Get PDF
    Astrophysical black holes are expected to be described by the Kerr metric. This is the only stationary, vacuum, axisymmetric metric, without electromagnetic charge, that satisfies Einstein’s equations and does not have pathologies outside of the event horizon. We present new constraints on potential deviations from the Kerr prediction based on 2017 EHT observations of Sagittarius A* (Sgr A*). We calibrate the relationship between the geometrically defined black hole shadow and the observed size of the ring-like images using a library that includes both Kerr and non-Kerr simulations. We use the exquisite prior constraints on the mass-to-distance ratio for Sgr A* to show that the observed image size is within ∼10% of the Kerr predictions. We use these bounds to constrain metrics that are parametrically different from Kerr, as well as the charges of several known spacetimes. To consider alternatives to the presence of an event horizon, we explore the possibility that Sgr A* is a compact object with a surface that either absorbs and thermally reemits incident radiation or partially reflects it. Using the observed image size and the broadband spectrum of Sgr A*, we conclude that a thermal surface can be ruled out and a fully reflective one is unlikely. We compare our results to the broader landscape of gravitational tests. Together with the bounds found for stellar-mass black holes and the M87 black hole, our observations provide further support that the external spacetimes of all black holes are described by the Kerr metric, independent of their mass
    corecore