150 research outputs found

    Influence of Substrates on the Long-Range Order of Photoelectrodeposited Se-Te Nanostructures

    Get PDF
    The long-range order of anisotropic phototropic Seā€“Te films grown electrochemically at room temperature under uniform-intensity, polarized, incoherent, near-IR illumination has been investigated using crystalline (111)-oriented Si substrates doped degenerately with either p- or n-type dopants. Fourier-transform (FT) analysis was performed on large-area images obtained with a scanning electron microscope, and peak shapes in the FT spectra were used to determine the pattern fidelity in the deposited Seā€“Te films. Under nominally identical illumination conditions, phototropic films grown on p^+-Si(111) exhibited a higher degree of anisotropy and a more well-defined pattern period than phototropic films grown on n+-Si(111). Similar differences in the phototropic Seā€“Te deposit morphology and pattern fidelity on p^+-Si versus n^+-Si were observed when the deposition rate and current densities were controlled for by adjusting the deposition parameters and illumination conditions. The doping-related effects of the Si substrate on the pattern fidelity of the phototropic Seā€“Te deposits are ascribable to an electrical effect produced by the different interfacial junction energetics between Seā€“Te and p^+-Si versus n^+-Si that influences the dynamic behavior during phototropic growth at the Seā€“Te/Si interface

    The Influence of Structure and Processing on the Behavior of TiO_2 Protective Layers for Stabilization of n-Si/TiO_2/Ni Photoanodes for Water Oxidation

    Get PDF
    Light absorbers with moderate band gaps (1ā€“2 eV) are required for high-efficiency solar fuels devices, but most semiconducting photoanodes undergo photocorrosion or passivation in aqueous solution. Amorphous TiO_2 deposited by atomic-layer deposition (ALD) onto various n-type semiconductors (Si, GaAs, GaP, and CdTe) and coated with thin films or islands of Ni produces efficient, stable photoanodes for water oxidation, with the TiO_2 films protecting the underlying semiconductor from photocorrosion in pH = 14 KOH(aq). The links between the electronic properties of the TiO_2 in these electrodes and the structure and energetic defect states of the material are not yet well-elucidated. We show herein that TiO_2 films with a variety of crystal structures and midgap defect state distributions, deposited using both ALD and sputtering, form rectifying junctions with n-Si and are highly conductive toward photogenerated carriers in n-Si/TiO_2/Ni photoanodes. Moreover, the photovoltage of these electrodes can be modified by annealing the TiO_2 in reducing or oxidizing environments. All of the polycrystalline TiO_2 films with compact grain boundaries investigated herein protected the n-Si photoanodes against photocorrosion in pH = 14 KOH(aq). Hence, in these devices, conduction through the TiO_2 layer is neither specific to a particular amorphous or crystalline structure nor determined wholly by a particular extrinsic dopant impurity. The coupled structural and energetic properties of TiO_2, and potentially other protective oxides, can therefore be controlled to yield optimized photoelectrode performance

    Volunteering in a hybrid institutional and organizational environment: an emerging research agenda

    Get PDF
    Traditionally, volunteers are core participants in classic voluntary associations; however, the organizational context of volunteering has changed significantly in recent decades through the proliferation of new and hybrid settings of participation that mingle roles and rationalities of civil society, state and market. In this chapter, I examine the consequences of this organizational change for the nature and functions of volunteering by means of a literature review

    Enhancing the activity of oxygen-evolution and chlorine-evolution electrocatalysts by atomic layer deposition of TiOā‚‚

    Get PDF
    We report that TiOā‚‚ coatings formed via atomic layer deposition (ALD) may tune the activity of IrOā‚‚, RuOā‚‚, and FTO for the oxygen-evolution and chlorine-evolution reactions (OER and CER). Electrocatalysts exposed to āˆ¼3ā€“30 ALD cycles of TiOā‚‚ exhibited overpotentials at 10 mA cmā»Ā² of geometric current density that were several hundred millivolts lower than uncoated catalysts, with correspondingly higher specific activities. For example, the deposition of TiOā‚‚ onto IrOā‚‚ yielded a 9-fold increase in the OER-specific activity in 1.0 M Hā‚‚SOā‚„ (0.1 to 0.9 mA cm_(ECSA)ā»Ā² at 350 mV overpotential). The oxidation state of titanium and the potential of zero charge were also a function of the number of ALD cycles, indicating a correlation between oxidation state, potential of zero charge, and activity of the tuned electrocatalysts

    Influence of Substrates on the Long-Range Order of Photoelectrodeposited Se-Te Nanostructures

    Get PDF
    The long-range order of anisotropic phototropic Seā€“Te films grown electrochemically at room temperature under uniform-intensity, polarized, incoherent, near-IR illumination has been investigated using crystalline (111)-oriented Si substrates doped degenerately with either p- or n-type dopants. Fourier-transform (FT) analysis was performed on large-area images obtained with a scanning electron microscope, and peak shapes in the FT spectra were used to determine the pattern fidelity in the deposited Seā€“Te films. Under nominally identical illumination conditions, phototropic films grown on p^+-Si(111) exhibited a higher degree of anisotropy and a more well-defined pattern period than phototropic films grown on n+-Si(111). Similar differences in the phototropic Seā€“Te deposit morphology and pattern fidelity on p^+-Si versus n^+-Si were observed when the deposition rate and current densities were controlled for by adjusting the deposition parameters and illumination conditions. The doping-related effects of the Si substrate on the pattern fidelity of the phototropic Seā€“Te deposits are ascribable to an electrical effect produced by the different interfacial junction energetics between Seā€“Te and p^+-Si versus n^+-Si that influences the dynamic behavior during phototropic growth at the Seā€“Te/Si interface

    Amorphous TiO_2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation

    Get PDF
    Although semiconductors such as silicon (Si), gallium arsenide (GaAs), and gallium phosphide (GaP) have band gaps that make them efficient photoanodes for solar fuel production, these materials are unstable in aqueous media. We show that TiO_2 coatings (4 to 143 nanometers thick) grown by atomic layer deposition prevent corrosion, have electronic defects that promote hole conduction, and are sufficiently transparent to reach the light-limited performance of protected semiconductors. In conjunction with a thin layer or islands of Ni oxide electrocatalysts, Si photoanodes exhibited continuous oxidation of 1.0 molar aqueous KOH to O_2 for more than 100 hours at photocurrent densities of >30 milliamperes per square centimeter and ~100% Faradaic efficiency. TiO_2-coated GaAs and GaP photoelectrodes exhibited photovoltages of 0.81 and 0.59 V and light-limiting photocurrent densities of 14.3 and 3.4 milliamperes per square centimeter, respectively, for water oxidation

    An Electrochemical, Microtopographical and Ambient Pressure X-Ray Photoelectron Spectroscopic Investigation of Si/TiO_2/Ni/Electrolyte Interfaces

    Get PDF
    The electrical and spectroscopic properties of the TiO_2/Ni protection layer system, which enables stabilization of otherwise corroding photoanodes, have been investigated in contact with electrolyte solutions by scanning-probe microscopy, electrochemistry and in-situ ambient pressure X-ray photoelectron spectroscopy (AP-XPS). Specifically, the energy-band relations of the p+-Si/ALD-TiO_2/Ni interface have been determined for a selected range of Ni thicknesses. AP-XPS measurements using tender X-rays were performed in a three-electrode electrochemical arrangement under potentiostatic control to obtain information from the semiconductor near-surface region, the electrochemical double layer (ECDL) and the electrolyte beyond the ECDL. The degree of conductivity depended on the chemical state of the Ni on the TiO2surface. At low loadings of Ni, the Ni was present primarily as an oxide layer and the samples were not conductive, although the TiO_2 XPS core levels nonetheless displayed behavior indicative of a metal-electrolyte junction. In contrast, as the Ni thickness increased, the Ni phase was primarily metallic and the electrochemical behavior became highly conductive, with the AP-XPS data indicative of a metal-electrolyte junction. Electrochemical and microtopographical methods have been employed to better define the nature of the TiO_2/Ni electrodes and to contextualize the AP-XPS results

    Measurement of minority-carrier diffusion lengths using wedge-shaped semiconductor photoelectrodes

    Get PDF
    Measurement of the photocurrent as a function of the thickness of a light absorber has been shown herein both theoretically and experimentally to provide a method for determination of the minority-carrier diffusion length of a sample. To perform the measurement, an illuminated spot of photons with an energy well above the band gap of the material was scanned along the thickness gradient of a wedge-shaped, rear-illuminated semiconducting light absorber. Photogenerated majority carriers were collected through a back-side transparent ohmic contact, and a front-side liquid or Schottky junction collected the photogenerated minority carriers. Calculations showed that the diffusion length could be evaluated from the exponential variation in photocurrent as a function of the thickness of the sample. Good agreement was observed between experiment and theory for a solid-state silicon Schottky junction measured using this method. As an example for the application of the technique to semiconductor/liquid-junction photoelectrodes, the minority-carrier diffusion length was determined for graded thickness, sputtered tungsten trioxide and polished bismuth vanadate films under back-illumination in contact with an aqueous electrolyte. This wedge technique does not require knowledge of the spectral absorption coefficient, doping, or surface recombination velocity of the sample

    Direct observation of the energetics at a semiconductor/liquid junction by operando X-ray photoelectron spectroscopy

    Get PDF
    Photoelectrochemical (PEC) cells based on semiconductor/liquid interfaces provide a method of converting solar energy to electricity or fuels. Currently, the understanding of semiconductor/liquid interfaces is inferred from experiments and models. Operando ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) has been used herein to directly characterize the semiconductor/liquid junction at room temperature under real-time electrochemical control. X-ray synchrotron radiation in conjunction with AP-XPS has enabled simultaneous monitoring of the solid surface, the solid/electrolyte interface, and the bulk electrolyte of a PEC cell as a function of the applied potential, U. The observed shifts in binding energy with respect to the applied potential have directly revealed ohmic and rectifying junction behavior on metallized and semiconducting samples, respectively. Additionally, the non-linear response of the core level binding energies to changes in the applied electrode potential has revealed the influence of defect-derived electronic states on the Galvani potential across the complete cell

    Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films

    Get PDF
    Reactively sputtered nickel oxide (NiO_x) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O_2(g). These NiO_x coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiO_x films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O_2(g)
    • ā€¦
    corecore