Supplementary Materials for

Amorphous TiO_{2} Coatings Stabilize $\mathrm{Si}, \mathrm{GaAs}$, and GaP Photoanodes for Efficient Water Oxidation

Shu Hu, Matthew R. Shaner, Joseph A. Beardslee, Michael Lichterman, Bruce S.
Brunschwig, Nathan S. Lewis*
*Corresponding author. E-mail: nslewis@caltech.edu
Published 30 May 2014, Science 344, 1005 (2014)
DOI: 10.1126/science. 1251428

This PDF file includes:
Materials and Methods
Supplementary Text
Figs. S1 to S17
References $(32,33)$

Materials and Methods

Chemicals
All materials were used as received, except where otherwise noted. Sulfuric acid, concentrated hydrochloric acid and hydrogen peroxide were purchased from EMD Chemicals. $\mathrm{H}_{2} \mathrm{O}$ with a resistivity of $18.2 \mathrm{M} \Omega \cdot \mathrm{cm}$ was obtained from a Millipore deionized water system.

An aqueous solution that contained the $\mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-14-}$ redox couple was prepared by making a solution of $50 \mathrm{mM} \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ (Fisher Scientific, 99.4\%) and 350 mM $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$ (Fisher Scientific, 99.4\%) in 200 mL of $\mathrm{H}_{2} \mathrm{O}$. A 1.0 M aqueous solution of KOH (semiconductor grade, Sigma-Aldrich, 99.99\% trace metal basis) was also prepared.

For non-aqueous electrochemistry, acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right.$, anhydrous, 99.8%, Sigma Aldrich) was dried by flowing through a solvent column, and then was stored over $3 \AA$, activated, molecular sieves (Sigma-Aldrich). LiClO_{4} (battery grade, 99.99\%, Sigma Aldrich) was dried by fusing the salt under a pressure $<1 \times 10^{-3}$ Torr at $300^{\circ} \mathrm{C}$. Prior to use, the resulting material was stored under ultra-high purity (UHP) $\operatorname{Ar}(\mathrm{g})$ that contained $<0.2 \mathrm{ppm}$ of $\mathrm{O}_{2}(\mathrm{~g})$. $\mathrm{Bis}\left(\right.$ cyclopentadienyl) iron(II) (ferrocene, $\mathrm{FeCp}_{2}{ }^{0}$) was purchased from Sigma Aldrich and was purified by sublimation under vacuum.
Bis(cyclopentadienyl) iron(III) terafluroborate (ferrocenium, $\mathrm{FeCp}_{2}{ }^{+} \cdot \mathrm{BF}_{4}{ }^{-}$) was purchased from Sigma Aldrich, recrystallized in a mixture of diethyl ether and acetonitrile (EMD Chemicals), and dried under vacuum prior to use. These reagents were used to prepare a solution that contained reagent concentrations of $1.0 \mathrm{M} \mathrm{LiClO}_{4}$, 0.5 mM ferrocenium, and 90 mM ferrocene.

Preparation of $\mathrm{Si}, \mathrm{GaAs}$, and GaP substrates

Three types of Si wafers were used as substrates for atomic layer deposition: $\mathrm{p}^{+}-\mathrm{Si}$ (B-doped with a resistivity, $\rho<0.002 \Omega \cdot \mathrm{~cm}, 3$ " diameter); n-Si (P-doped with $\rho=2.06-$ $2.18 \Omega \cdot \mathrm{~cm}, 3$ " diameter); and n ${ }^{+}$-Si (As-doped with $\rho<0.002 \Omega \cdot \mathrm{~cm}, 3$ " diameter). The Si surfaces were first cleaned using an RCA SC-1 procedure that involved soaking the Si wafers in a 3:1 (by volume) solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (conc., $\sim 18.4 \mathrm{M}$) and $\mathrm{H}_{2} \mathrm{O}_{2}$ (conc., $\sim 1 \mathrm{M}$) for 10 min , and then placing the samples for $\sim 10 \mathrm{~s}$ in a 10% (by volume) aqueous solution of hydrofluoric acid (conc. 31.8 M). The Si samples were then etched using the RCA SC-2 procedure of soaking in a 5:1:1 (by volume) solution of $\mathrm{H}_{2} \mathrm{O}$, concentrated hydrochloric acid (11.1 M), and hydrogen peroxide (conc. $\sim 1 \mathrm{M}$) for 10 min at $75^{\circ} \mathrm{C}$.
$\mathrm{A} \mathrm{p}^{+}-\mathrm{GaAs}$ wafer oriented to expose the (111) B surface (Zn-doped, acceptor concentration of $1 \times 10^{19} \mathrm{~cm}^{-3}, 2$ inch by AXT, Inc.) was also used as a substrate for atomic-layer deposition. The GaAs was placed for 15 s in a solution of 0.04% (by volume) Br_{2} (Acros Organics) in methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right.$, low water, J.T.Baker) and was then immersed in 1.0 M KOH (aqueous solution of potassium hydroxide pellets, semiconductor grade, 99.99% trace metals basis, Sigma-Aldrich) for 15 s . The GaAs samples were rinsed with copious amounts of deionized $\mathrm{H}_{2} \mathrm{O}$, and were then dried using a stream of $\mathrm{N}_{2}(\mathrm{~g})$.

Prior to ALD, n-type GaP samples were etched, and ohmic contacts were formed, using a published procedure.(32) $\mathrm{n}-\mathrm{GaP}$ samples were prepared from $\mathrm{n}-\mathrm{GaP}$ wafers that had a sulfur dopant density of $\sim 5 \times 10^{17} \mathrm{~cm}^{-3}$. Small ($\sim 0.3 \mathrm{~cm}^{2}$) pieces were cut from the
wafer using a scribe, and the pieces were then etched in $18.4 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ for 30 s , followed by a rinse with copious amount of de-ionized $\mathrm{H}_{2} \mathrm{O}$.

Fabrication of planar $\mathrm{np}^{+}-\mathrm{Si}$ and $\mathrm{np}^{+}-\mathrm{GaAs}$ samples

A 4" n-Si (0.1-0.3 ohm-cm, <100> oriented, single-side polished) wafer was cleaned prior to formation of the p^{+}emitter. The cleaning procedure consisted of a 30 s in Buffered hydrofluoric acid (BHF) etch (Transene, Inc.); 20 min in an RCA I (5:1:1 of $\mathrm{H}_{2} \mathrm{O}: \mathrm{H}_{2} \mathrm{O}_{2}: \mathrm{NH}_{4} \mathrm{OH}$) organic-species cleaning solution at $70^{\circ} \mathrm{C}$; a BHF etch for 30 s ; and 20 min RCA II ($6: 1: 1$ of $\mathrm{H}_{2} \mathrm{O}: \mathrm{HCl}: \mathrm{H}_{2} \mathrm{O}_{2}$) metals cleaning at $70^{\circ} \mathrm{C}$, with water rinses between each process step. Immediately following this cleaning procedure, the wafer was cleaved into $\sim 1 " \times 1$ " pieces, to fit into the doping furnace. Each piece was then etched for 30 s in BHF, rinsed with $\mathrm{H}_{2} \mathrm{O}$, dried with $\mathrm{N}_{2}(\mathrm{~g})$, and loaded into a borondoping furnace. Wafer pieces were loaded back-to-back on a quartz boat with the polished side facing out, and were placed between Saint Gobain BN-975 boron-doping wafers that over-filled each n-Si piece. For each doping run, six 1 " $\times 1$ " n-Si pieces were loaded into 3 slots. Each doping run was performed in a 4" tube furnace at $950^{\circ} \mathrm{C}$ under a $10 \mathrm{~L} \mathrm{~min}^{-1}$ flow of $\mathrm{N}_{2}(\mathrm{~g})$. In each run, the boat was loaded into the tube furnace during a 1 min period, and was then soaking at $950^{\circ} \mathrm{C}$ for 3 min and unloaded over another 1 min period. Following two doping runs (12 total samples), each sample was etched for 30 s in BHF and then was loaded, without a dopant source, into the doping furnace with a $5 \mathrm{~L} \mathrm{~min}^{-1}$ flow of $\mathrm{O}_{2}(\mathrm{~g})$ for 30 min at $750^{\circ} \mathrm{C}$, to grow a low temperature oxide (LTO). This LTO allowed facile removal of residual boron on the surface through a 30 s BHF etch.

Planar $\mathrm{np}^{+}-\mathrm{GaAs}$ junctions were grown epitaxially on an n^{+}-GaAs wafer that had a (100)-oriented, polished surface (Si-doped, donor concentration of $1 \times 10^{18} \mathrm{~cm}^{-3}, 2$ inch by MTI, Inc.). A $2 \mu \mathrm{~m}$ thick n -GaAs layer (Si-doped, donor concentration of $2 \times 10^{17} \mathrm{~cm}^{-3}$) and a 100 nm thick p^{+}-GaAs layer (Si-doped, accepter concentration of $\sim 5 \times 10^{18} \mathrm{~cm}^{-3}$) were sequentially grown on the $n^{+}-G a A s$ substrate. The edges of both the $n p^{+}-S i$ and $n p^{+}-$ GaAs wafers were cleaved off and discarded, to eliminate shunts from the back side of the sample to the front p^{+}emitter.

Atomic layer deposition of TiO_{2}

TiO_{2} films were deposited onto $\mathrm{Si}, \mathrm{GaAs}$, and GaP substrates at $150^{\circ} \mathrm{C}$ using a Cambridge Nanotech S200 ALD system. The Si, GaAs, and GaP surfaces were prepared as described above and loaded immediately thereafter into the ALD chamber. Each ALD cycle consisted of a 0.015 s pulse of $\mathrm{H}_{2} \mathrm{O}$, followed by a 0.10 s pulse of tetrakisdimethylamidotitanium (TDMAT, Sigma-Aldrich, 99.999\%, used as received). A 15-s purge under a constant $0.02-\mathrm{L} \mathrm{min}{ }^{-1}$ flow of research-grade $\mathrm{N}_{2}(\mathrm{~g})$ was performed between each precursor pulse. When idle, the ALD system was maintained under a continuous $\mathrm{N}_{2}(\mathrm{~g})$ purge and had a background pressure of 2.7×10^{-1} Torr.

Deposition of metal films and fabrication of island patterns

Both electron-beam evaporation and radio-frequency sputtering were used to deposit Ni onto patterned and unpatterned TiO_{2} surfaces. The electrochemical performance was essentially identical for both sputtered and e-beam evaporated Ni . The as-deposited Ni films were 100 nm thick for $\mathrm{p}^{+}-\mathrm{Si}$ and $\mathrm{p}^{+}-\mathrm{GaAs}$ in Fig. 1 and 4, were nominally 2 nm
thick for $\mathrm{n}-\mathrm{GaP}$ and np^{+}-GaAs in Fig. 1, and were nominally 3 nm thick for the XPS study in Fig. S17. The deposition rate was calibrated using profilometry. 100-nm thick Ni films were also deposited on flat quartz slides as a control sample in Fig. 1 and 4.

A series of photolithography, physical vapor deposition, and lift-off steps was used to fabricate Ni -island patterns on TiO_{2} overlayers that had been grown on $\mathrm{n}-\mathrm{Si}, \mathrm{np}^{+}-\mathrm{Si}$ and $\mathrm{np}^{+}-\mathrm{GaAs}$ substrates. The mask used for the island pattern was a square array of 3 μ m-diameter circles with a $7-\mu \mathrm{m}$ pitch. Ni islands (100 nm thick) on TiO_{2} were fabricated by lifting off positive photoresist films, S1813 (Shipley), which were patterned to mask deposited Ni layers. The photoresist was removed using PG remover (MicroChem) followed by rinsing the surface of the sample with copious amount of $\mathrm{H}_{2} \mathrm{O}$.

Optical absorptance measurements

The optical absorptance of the $\mathrm{n}-\mathrm{Si} / \mathrm{TiO}_{2} / \mathrm{Ni}$-island samples was determined by integrating sphere transmission (T) and reflection measurements for both sides of the samples (R_{1} and R_{2}) at normal incidence. For transmission measurements, the sample was mounted at the front port of the integrating sphere, whereas for reflection measurements the sample was mounted at the rear port of the sphere. The optical reflection was normalized to a reflectance standard (99\%, LabSphere, Inc) that was placed at the same location as the sample. The absorptance (as a function of wavelength, λ) was determined from the measured reflection and transmission, assuming sufficient absorption of the sample, as follows:

$$
A(\lambda)=1-R_{1}(\lambda)-\frac{T(\lambda)}{1-R_{2}(\lambda)}
$$

Electrode preparation

Ohmic contacts to the semiconducting electrodes were formed by rubbing an In- Ga eutectic onto the unpolished back sides of the Si samples; by sequentially depositing $\mathrm{Ni} / \mathrm{Cu}$ films onto the unpolished back sides of the $\mathrm{p}^{+}-\mathrm{GaAs}$ samples; or by soldering In to the back side of $\mathrm{n}-\mathrm{p}^{+}-\mathrm{GaAs}$ or $\mathrm{n}-\mathrm{GaP}$ samples. The $\mathrm{np}^{+}-\mathrm{GaAs}$ samples were then annealed under forming gas at $450{ }^{\circ} \mathrm{C}$ for 30 s whereas the $\mathrm{n}-\mathrm{GaP}$ samples were annealed under forming gas at $400^{\circ} \mathrm{C}$ for 10 min . For aqueous electrochemistry, Ag paste was used to attach the samples to a piece of Cu tape as a current collector. The sample assembly was then assembled into a custom-made Teflon compression cell equipped with an O-ring seal ($0.0314 \mathrm{~cm}^{2}$ in electrode area). For electrochemistry using glass-rod electrodes, Ag paste was used to attach the ohmic contact on the back side of the samples to a coiled, tin-plated Cu wire which was then threaded through a glass tube. The sample was then encapsulated and sealed to the glass tube using grey epoxy (Hysol 9460F). An optical scanner was used to image the exposed electrode surface areas and the areas were measured using ImageJ software. All the electrodes in this study were typically $0.2-1.3$ cm^{2} in area.

Aqueous and non-aqueous electrochemical measurements
A saturated calomel electrode (SCE, CH Instruments) was used as a reference electrode for electrochemical measurements that were performed using aqueous solutions, including photoelectrochemical, spectral response and faradaic efficiency measurements. Pt gauze (100 mesh, 99.9\% trace metal basis, Alfa-Aesar), was used as
the counter electrode during electrochemical measurements with the $\mathrm{Fe}(\mathrm{CN})_{6}{ }^{-3 /-4}$ couple, and a carbon rod placed within a fritted glass tube (Aceglass, Inc.) was used as the counter electrode for $1.0 \mathrm{M} \mathrm{KOH}(\mathrm{aq})$ solution. A carbon counter electrode in a fritted glass tube eliminated the possibility of contamination of the electrolyte and thus the working photoelectrode by trace Pt that would result from minute dissolution of the material in a Pt counter electrode. The formal potential for the oxidation of to $\mathrm{O}_{2}(\mathrm{~g})$, 0.19 V vs. SCE, was calculated from the measured pH of the solution (pH 13.7) and using SCE $=0.24 \mathrm{~V}$ vs. NHE. Consistently, the open-circuit potential of a Ni film electrode in 1.0 M KOH was measured as 0.19 V vs. SCE. The Nernstian potential of the $50 \mathrm{mM} \mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}$ and $350 \mathrm{mM} \mathrm{Fe}(\mathrm{CN})_{6}{ }^{4-}(\mathrm{aq})$ solution was 0.19 V vs. SCE, as obtained by measuring the potential difference of a 2 mm -diameter Pt disc vs. an SCE in the solution, and the open-circuit voltage was determined as the potential difference at opencircuit under illumination between the photoelectrode and a counterelectrode poised at the Nernstian potential of the electrolyte solution.

A Pt wire (0.5 mm diameter, 99.99\% trace metals basis, Alfa-Aesar) was used as a reference electrode and a Pt gauze was used as the counter electrode for electrochemical measurements made in the non-aqueous solutions. A custom electrochemical cell with a Pyrex flat bottom was used for non-aqueous electrochemistry. During measurements, the electrolyte was rigorously agitated with a magnetic stir bar driven by a model-train motor. All of the data presented for electrochemical measurements in aqueous solutions included compensation for the series resistance of the solution, as obtained from highfrequency electrical-impedance measurements.

A Xe lamp-based solar simulator, as well as ELH-type and ENH-type tungstenhalogen lamps, were used for photoelectrochemical experiments. The illumination intensity was calibrated by placing a Si photodiode (Thor Labs) in the glass electrochemical cell or in a Teflon compression cell, in the same location that was occupied by the exposed area of a photoelectrode. The Si photodiode was previously calibrated by measurement of the short-circuit current-density value under AM 1.5 simulated sunlight at 1 -Sun, i.e., at $100 \mathrm{~mW} \mathrm{~cm}^{-2}$ of irradiance from a Xe arc lamp with an AM 1.5 filter.

Oxygen-evolution efficiency measurements

A Neofox fluorescence probe was used in an airtight cell with a side-facing quartz window. The oxygen concentration was monitored throughout the measurement, and was tabulated via measured values from a fluorescence detector. These values were calibrated using the standard concentration of oxygen in water ($7700 \mu \mathrm{~g} \mathrm{~L}^{-1}$ or 2.4×10^{-4} M) under a standard 20.9\% (by volume) oxygen atmosphere. $\mathrm{A} \mathrm{Ag} / \mathrm{AgCl}$ electrode was the reference electrode, and the counter electrode was a carbon rod that was positioned in a separate, fritted compartment. The cell volume was 52 mL , and the cell was purged with a stream of UHP $\operatorname{Ar}(\mathrm{g})$ for $\sim 1.5 \mathrm{~h}$ prior to data collection. The experiment lasted for 30 min after a $10-\mathrm{min}$ waiting period at open circuit. The oxygen concentration was monitored throughout the measurement.

The data were collected and modeled using a Matlab script. The oxygen concentration data were converted into micrograms of O_{2} by first correcting for the O_{2} leak rate measured during the first 10 min of the experiment, followed by calculating the mass of O_{2} in micrograms at each time point. The calculation process was performed by
multiplying the reported percentage of oxygen by the number of micrograms of O_{2} dissolved in water at room temperature under $1 \mathrm{~atm}, 7700 \mu \mathrm{~g} \mathrm{~L}^{-1}$ (assuming the value the same as in 1.0 M aqueous acidic solutions), and the cell volume (52 mL), divided by the concentration of O_{2} in air under 1 atm , which was in the value reported by the florescence probe (20.9%). To compare the charge versus time data from the potentiostat with the amount of oxygen generated versus time, 100\% Faradaic efficiency was assumed for comparison. Specifically, the amount of charge passed (in mA•h) was multiplied by 3.6 to convert the data into coulombs; this value was then multiplied by 83 to convert the value into micrograms of O_{2}, because this is the conversion factor of 1 coulomb of electrons into 1 microgram of O_{2}. Therefore, both the cumulative oxygen generated and charge passed during the measurement can be shown in one plot with two comparable y axes, where $0.33 \mathrm{~mA} \cdot \mathrm{~h}$ of charge passed corresponded to $100 \mu \mathrm{~g} \mathrm{O}_{2}$ generated. The electrode area for the measured $\mathrm{Si}, \mathrm{GaAs}$ and GaP photoanodes are $0.26,0.20$ and 0.47 cm^{2}, respectively.

Secondary-ion mass spectrometry (SIMS)

Secondary-ion mass spectrometry (SIMS) analysis was performed using a Cameca SIMS-7f GEO instrument. A Cs ${ }^{+}$primary ion beam was used to ionize and sputter surface atoms from the sample. The sputtered, ionized atoms (secondary ions) were collected and analyzed in a mass spectrometer. The samples were sputtered at normal incidence with a $7 \mathrm{keV} \mathrm{Cs}{ }^{+}$beam at substrate bias of 4 keV . The raster area was $125 \mu \mathrm{~m}$ $\times 125 \mu \mathrm{~m}$, with a centered $12500 \mu \mathrm{~m}^{2}$ gated area. Count rates of ${ }^{30} \mathrm{Si},{ }^{48} \mathrm{Ti},{ }^{12} \mathrm{C}+{ }^{133} \mathrm{Cs}$ and ${ }^{14} \mathrm{~N}+{ }^{133} \mathrm{Cs}$ (complex ions) were recorded as a function of sputtering time.

Spectroscopic ellipsometry

Complex refractive index (n, k) data for films of unannealed, as-grown TiO_{2} on n^{+}Si were obtained using spectroscopic ellipsometry. The ellipsometric data were acquired using a J.A. Woolam V-VASE system. The non-absorbing ($k \sim 0$) portion of the data were fit using a Cauchey model that assumed a $\mathrm{TiO}_{2} / \mathrm{SiO}_{2}$ bilayer structure on Si . The $\mathrm{TiO}_{2} n$, k values were extracted from a point-by-point fit, using fixed Cauchey and film-thickness parameters. Measurements were performed on TiO_{2} films with thicknesses of $4 \mathrm{~nm}, 31$ $\mathrm{nm}, 44 \mathrm{~nm}, 68 \mathrm{~nm}$, and 143 nm , with the extracted n, k values being comparable for all film thicknesses.

Electron microscopy

Transmission electron microscopy (TEM) was performed using a JOEL JEM-2100F operating at an accelerating voltage of 200 kV . The bright-field images and selected-area electron diffraction patterns were acquired under TEM mode, while the elementalcontrast images (Fig. 3A) and energy-dispersive x-ray spectroscopy data (Fig. 3B) were acquired under scanning TEM mode. The cross-sectional TEM sample was polished to 5 $\mu \mathrm{m}$ in thickness using a series of diamond lapping films, and the samples were then further polished to $50-100 \mathrm{~nm}$ thin foils by a Gatan precision ion polishing system.

X-ray photoelectron spectroscopy
X-ray photoelectron spectroscopy (XPS) was performed using a Kratos Axis Ultra system with a base pressure of $<1 \times 10^{-9}$ Torr. A monochromatic Al K α source was used
to illuminate the sample with 1486.7 eV photons at a power of 150 W . A hemispherical analyzer oriented for detection along the sample surface normal was used for maximum depth sensitivity. Survey scans were obtained at a resolution of 1 eV with a pass energy of 80 eV . Detailed scans were acquired at a resolution of 25 meV with a pass energy of 10 eV , using variable acquisition times. When cleaning of adventitious species such as C was required, an octopole ion gun was used to sputter-clean the sample surface with 500 eV Ar ions for $30-60 \mathrm{~s}$. $\sim 10 \mathrm{~min}$ of air exposure occurred between sample transfers from the ALD or sputtering deposition tool to the XPS load lock.

Measurement of charged-carrier density (Hall measurements)

TiO_{2} films were grown on glass slides by the aforementioned ALD procedure. The glass slides were cleaned by sequential rinsing with acetone, isopropanol and ethanol for 1 min each. The samples used for Hall measurements were made by cutting TiO_{2}-coated glass into $1 \mathrm{~cm} \times 1 \mathrm{~cm}$ square pieces, and In was directly soldered onto the four corners of the TiO_{2} film. The current-supply leads and voltage probes were connected to the Hall measurement circuit board through In-soldered Cu wires. Ohmic conduction was confirmed by current-voltage ($I-V$) measurements of any two of the four In-contacted corners, with the supplied current in the range of $50-100 \mathrm{nA}$. The magnetic field was fixed at 3000 gauss. TiO_{2} films having thicknesses of $4 \mathrm{~nm}, 31 \mathrm{~nm}, 44 \mathrm{~nm}, 68 \mathrm{~nm}$, and 143 nm were measured, and all showed n-type conduction with an average electron concentration of $4 \times 10^{16} \mathrm{~cm}^{-3}$.

Hg droplet measurements

A Hg droplet was placed on $\mathrm{ALD} \mathrm{TiO}_{2}$-coated Si samples, with the contact area confined by a 2 mm diameter O-ring. A Pt wire was inserted into the Hg droplet to make the top contact, whereas the ohmic bottom contact was formed by rubbing In-Ga eutectic into the unpolished back side of the Si . The bias polarity was kept the same as in the electrochemical measurements of Fig. 1 and 4, i.e. positive voltage corresponded to a forward bias of the $\mathrm{p}^{+}-\mathrm{Si}$ substrate with respect to a Hg droplet, and positive current corresponded to anodic currents in which holes flowed from the Si to the Hg droplet.

Mott-Schottky analysis

The Mott-Schottky analysis (Fig. S15) of the area-corrected differential capacitance-potential data was obtained using electrochemical impedance spectroscopy.(31) The solution was quiescent and kept in dark during the measurements. The electrochemical impedance data were fit to a model that consisted of a parallel resistor and capacitor with a fixed constant phase element arranged electrically in series with a separate resistor.

Supplementary Text

Load-line analysis
The J-E behavior of a serially connected Si PV cell and an electrocatalytic anode was calculated by negatively shifting the J - E characteristic of the electrolytic anode by the photovoltage of the PV cell at each photocurrent density. The photocurrent density (J) - voltage (V) performance of the ideal Si PV cell was calculated using the ideal diode equation: $J=J_{L}-J_{0}\left(e^{-\frac{q V}{k T}}-1\right)$, where J_{L} is light-limited current density $J_{L}=27.7$
$\mathrm{mA} \cdot \mathrm{cm}^{-2}$), J_{0} is dark current density, q is the unsigned charge on the electron, k is Boltzmann's constant, and T is the absolute temperature ($T=300 \mathrm{~K}$). Obtaining a $V_{o c}$ of the ideal Si cell that reproduced the observed 0.32% thermodynamic water-oxidation efficiency required a value of $J_{0}=1.55 \times 10^{-6} \mathrm{~mA} \cdot \mathrm{~cm}^{-2}$ for the PV cell component of the series-connected system used in the model. An analogous procedure for GaAs -based systems required a PV cell having a $J_{0}=1.25 \times 10^{-12} \mathrm{~mA} \cdot \mathrm{~cm}^{-2,}$ which produced a $V_{\text {oc }}=$ 0.77 V , in combination with a $J_{\mathrm{L}}=14.3 \mathrm{~mA} \cdot \mathrm{~cm}^{-2}$ and a fill factor of 0.86 and a PV energy-conversion efficiency of 9.5%, in series with a p ${ }^{+}-\mathrm{GaAs} / \mathrm{TiO}_{2} / \mathrm{Ni}$-film dark electrode (Fig. S2B), to produce the $J-E$ behavior observed for the n-p ${ }^{+}-\mathrm{GaAs} / \mathrm{TiO}_{2} / \mathrm{Ni}-$ film integrated photoelectrode system (Fig. 1D). If a 25% absorption loss of Ni catalysts is considered, a 12.7% GaAs PV cell would be required, and the water-oxidation efficiency would be 6.6% at a light-limited photocurrent density of $19.1 \mathrm{~mA} \cdot \mathrm{~cm}^{-2}$ when there's negligible optical absorption loss.

ALD growth rate

ALD samples with 250, 750,1000 and 1500 and 3000 cycles of pulsed precursors were grown on p^{+}and n^{+}Si substrates. These growths produced film thicknesses of 4.3 $\mathrm{nm}, 30.7 \mathrm{~nm}, 43.5 \mathrm{~nm}, 68.3 \mathrm{~nm}$ and 142.5 nm , corresponding to a growth rate of $\sim 0.5 \AA$ / cycle. The ellipsometrically measured and fitted film thicknesses agreed with the thicknesses obtained from TEM micrographs (Fig. S7).

Energy-conversion properties of photoelectrodes

A bare $\mathrm{n}-\mathrm{p}^{+}$-Si electrode in contact with a non-aqueous electrolyte that contained 0.5 mM ferrocenium and 90 mM ferrocene (Fc) with $1.0 \mathrm{M} \mathrm{LiClO}_{4}$ dissolved in dry $\mathrm{CH}_{3} \mathrm{CN}$ exhibited $V_{\text {oc }}=0.50-0.55 \mathrm{~V}$, a short-circuit current density, J_{sc}, of $33.6 \pm 5.0 \mathrm{~mA} \cdot \mathrm{~cm}^{-2}$, and a fill factor, $f f$, of 0.29 , with a photoelectrode energy-conversion efficiency of 5.42% under simulated 1-Sun illumination (Fig. S3). The $V_{\text {oc }}$ of the n-p ${ }^{+}$-Si junction was therefore within experimental error of the photovoltages exhibited by the n-p+ ${ }^{+}$ $\mathrm{Si} / \mathrm{TiO}_{2} / \mathrm{Ni}$-island electrodes. The presence of the thick TiO_{2} film thus resulted in <50 mV voltage losses for both minority- and majority-carrier hole conduction. In contrast to the behavior shown in Fig. 1B, a photovoltage of $<5 \mathrm{mV}$ was observed when Ni islands were directly deposited and patterned onto n-Si electrodes (Fig. S4), presumably due to the formation of nickel silicide at the $\mathrm{Si} / \mathrm{Ni}$ interface. In addition to producing negligible photovoltages under alkaline anodic operating conditions, the Ni on the $\mathrm{n}-\mathrm{Si} / \mathrm{Ni}$ samples was undercut and the underlying Si was etched consequently, in accord with prior observations (14) and with expectations based on the chemical and photoanodic instability of unprotected or poorly protected Si electrodes in alkaline media.

Description of XPS data

Fig. S17 shows the X-ray photoelectron spectra for the Ti 2p and Ni 2p core-levels for a $3-\mathrm{nm}$ Ni film deposited on ALD-grown TiO_{2}. The chemical shift of the $\mathrm{Ti} 2 \mathrm{p} 1 / 2$ and $\mathrm{Ti} 2 \mathrm{p} 3 / 2$ peaks indicates that only the Ti^{4+} chemical states were present in the asgrown TiO_{2}. The interfacial Ni may be present in various oxidation states, with $\mathrm{Ni}_{2} \mathrm{O}_{3}$ and nickel oxide hydroxide (when present) contributing to the peak at 855.9 eV binding energy. At the $\mathrm{Ni} / \mathrm{TiO}_{2}$ interface, the oxidation state of Ti remained Ti^{4+} as compared
with ALD-grown TiO_{2}, because the binding energy of the Ti 2 p XPS core-level spectra remained at 459.0 eV after Ni deposition.

The valence-band offset of TiO_{2} relative to the Si substrate was determined by XPS using the Kraut method, as described by Wallrapp et al. (33) High-resolution scans were obtained from the Fermi edge to the Si 2p and Ti 3p peaks, for Si that was cleaned by the RCA SC-2 procedure as well as for a bulk film of TiO_{2} deposited via ALD. The valenceband maximum (VBM) for the RCA SC-2 cleaned Si and for the $43.5 \mathrm{~nm} \mathrm{TiO}{ }_{2}$ film on Si was determined by a linear extrapolation of the Fermi edge to the binding energy axis (Fig. S13A and S13C). The differences between the intensity maxima of the Si 2 p and Ti 3 p core-level peaks and their corresponding valence-band maxima, respectively, were taken as the energy of the core level orbitals, which were found to be $98.86 \pm 0.005 \mathrm{eV}$ and $34.36 \pm 0.02 \mathrm{eV}$, respectively. A high-resolution scan of a Si substrate with a thin TiO_{2} layer (190 cycles of ALD on Si) was acquired over an energy range that spanned the Si 2p peak and the Ti 3p peak (Fig. S13B). The core level offset (of $62.30 \pm 0.06 \mathrm{eV}$) between the Si 2 p and Ti 3 p signals was determined by the difference in energy values between the intensity maxima of the two peaks. The overall valence-band offset across the $\mathrm{Si} / \mathrm{TiO}_{2}$ interface was then calculated as the difference between the Si 2p to VBM value and the Ti 3 p to VBM value, subtracted from the offset between the Si 2 p and Ti 3 p peaks. The VB offset value was determined to be $2.22 \pm 0.08 \mathrm{eV}$ for ALD-grown TiO_{2} films on Si with interfacial layers prepared by the RCA SC-2 etching procedure.

Description of optical absorption data

Tauc plots (Fig. S14) were generated by plotting ($\alpha \mathrm{h} v \mathrm{n})^{1 / 2}$ as a function photon energy, where α is the absorption coefficient ($\alpha=4 \pi k / \lambda$), and k is Planck's constant. The two small peaks observed in the Tauc plot were consistent with the presence of defect bands in the unannealed, as-grown TiO_{2} films. The optical band gap of the asgrown TiO_{2}, $3.34 \pm 0.01 \mathrm{eV}$, was determined by a linear extrapolation of the optical absorption edge in the Tauc plot to the y axis.

Ir overlayers on TiO_{2}
Ir was selected as an alternative metal to evaluate the generality of the $\mathrm{TiO}_{2} /$ electrocatalyst structure relative to $\mathrm{TiO}_{2} / \mathrm{Ni}$. Ir has a higher work function (5.3-5.7 V) than $\mathrm{Ni}(4.8-5.0 \mathrm{~V})$ as measured in vacuum. $\mathrm{RuO}_{\mathrm{x}}$ has limited stability under acidic and basic conditions. $\mathrm{IrO}_{\mathrm{x}}$ is considered as a stable OER catalyst in base, and only $\mathrm{IrRuO}_{\mathrm{x}}$ catalysts, used in dimensionally stable anodes, are long-term stable in acid. In base, although $\mathrm{RuO}_{\mathrm{x}}$ is more active than $\mathrm{IrO}_{\mathrm{x}}, \mathrm{RuO}_{\mathrm{x}}$ is not significantly more active than Ni -based OER catalysts: for example, McCrory et al. (29) recently showed that $\mathrm{IrO}_{\mathrm{x}}$ has an overpotential of 330 mV as compared to NiFeO_{x} of 360 mV when both produce anodic current densities of $10 \mathrm{~mA} \cdot \mathrm{~cm}^{-2}$ for the OER.

Long-term stability of photoelectrodes

$\mathrm{Ann} \mathrm{n}-\mathrm{Si} / \mathrm{TiO}_{2} / \mathrm{Ni}$ photoelectrode has run for >200 hours cumulatively, and the film did not prevent hole conduction, however longer term studies would be required to assess the very long term thermal stability of the film towards oxidation. Additionally, separate studies are needed to establish the efficacy of the unannealed film over very large
electrode areas to understand the defect density and defect tolerance of the electrodes in a manufacturing environment.

Fig. S1.
Secondary-ion mass spectrometry data of TiO_{2} films on Si with Ni overlayers (a) and without Ni overlayers (b) of nominally 100 nm Ni thickness deposited by sputtering. The thickness of the TiO_{2} films in (a) and (b) was 143 nm . If Ni had percolated through the TiO_{2} films, the Ni signal in (a) would be above the background Ni concentration, as shown in (b). (c) C and N impurity profiles in ALD- TiO_{2} films of $4 \mathrm{~nm}, 31 \mathrm{~nm}, 44 \mathrm{~nm}$, and 143 nm in thickness. The C and N impurity levels were constant with depth throughout the films of various thicknesses, and were comparable to each other for various thicknesses.

Fig. S2.

Dark $J-E$ behavior of TiO_{2}-coated $\mathrm{p}^{+}-\mathrm{Si}$ (a) and $\mathrm{p}^{+}-\mathrm{GaAs}(\mathrm{b})$ electrodes, covered with 100 nm Ni films, in contact with 1.0 KOH (aq). The cyclic-voltammetry data in both (a) and (b) were measured in the dark, and have been compensated for the ohmic series resistance of the electrolyte. The formal potential for water oxidation is labeled at 0.19 V vs. SCE. (a) $4-143 \mathrm{~nm}$ thick TiO_{2}, as well as a 100 nm thick, continuous Ni film on quartz, as a control; and (b) is the same structure on $\mathrm{p}^{+}-\mathrm{GaAs}$ but with a TiO_{2} thickness of 68 nm . The black curve in (b) shows increasing corrosion current for a $\mathrm{p}^{+}-\mathrm{GaAs}$ electrode without the TiO_{2} overlayer present. The electrode area was typically 0.2 - 1.3 cm^{2}.

Fig. S3.
$J-E$ behavior of an np^{+}-Si buried junction (photoactive) in contact with 0.5 mM ferrocenium and 90 mM ferrocene (Fc) and $1.0 \mathrm{M} \mathrm{LiClO}_{4}$ in $\mathrm{CH}_{3} \mathrm{CN}$, under simulated ELH-type 1-Sun illumination (blue curve) and in dark (black curve). The top p^{+}-Si layer formed an ohmic contact to the $\mathrm{Fc}^{+/ 0}$ redox couple.

Fig. S4.
$J-E$ behavior of Ni islands (100 nm thick, $3 \mu \mathrm{~m}$ circles in $7 \mu \mathrm{~m}$ pitch) on $\mathrm{n}-\mathrm{Si}$ in 1.0 M $\mathrm{KOH}(\mathrm{aq})$, in the dark (A) and under illumination (B).

Fig. 55.
$J-E$ data of an $\mathrm{np}^{+}-\mathrm{Si}$ photoelectrode coated with TiO_{2} and Ni islands at various stages of chronoamperometry shown in Figure 3. The fill factors at each stage barely decreased, and the light-limited photocurrent density varied linearly with the illumination intensity.

Fig. S6.
Photocurrent vs. time data, under simulated 1-Sun illumination at the formal potential for water oxidation (0.19 V vs. SCE), of a $2-\mathrm{nm} \mathrm{Ni} / 118 \mathrm{~nm} \mathrm{TiO}_{2}$-coated np^{+}- GaAs photoanode (A) and a $2-\mathrm{nm} \mathrm{Ni} / 118 \mathrm{~nm} \mathrm{TiO}_{2}$-coated $\mathrm{n}-\mathrm{GaP}(\mathrm{B})$ photoanode in 1.0 M $\mathrm{KOH}(\mathrm{aq})$ under constant simulated AM 1.5 1-Sun illumination. Stable photocurrents for >25 hours are shown in the inset of (A). The GaAs and GaP electrode area was $0.82 \mathrm{~cm}^{2}$ and $0.40 \mathrm{~cm}^{2}$, respectively.

Fig. S7.
Cross-section TEM characterization of the $\mathrm{Ni} / \mathrm{TiO}_{2} / \mathrm{p}^{+}$-Si interface. (A) Bright-field micrograph showing that the TiO_{2} film thickness was measured to be $68.4 \pm 0.8 \mathrm{~nm}$. (B) Selective-area diffraction pattern at the $\mathrm{Ni} / \mathrm{TiO}_{2}$ interface.

Fig. $\mathbf{S 8}$.
Dark $J-E$ behavior of a nominally 100 nm Ni film on a 68 nm thick ALD-TiO ${ }_{2}$ film on $\mathrm{p}^{+}-\mathrm{GaAs}$ (black curve) and bare 68 nm ALD TiO $2 / \mathrm{p}^{+}-\mathrm{GaAs}$ (red curve) in contact with 50 mM of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ and 350 mM of $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$ in $\mathrm{H}_{2} \mathrm{O}$.

Fig. S9.
$J-E$ data for 68 nm of ALD- TiO_{2} on Si in contact with 1.0 M KOH (aq). (A) $68 \mathrm{~nm} \mathrm{TiO}_{2}$ on $\mathrm{p}^{+}-\mathrm{Si}$ in the dark exhibited negligible hole conduction through bare TiO_{2} in 1.0 M $\mathrm{KOH}(\mathrm{aq})$. (B) $68 \mathrm{~nm} \mathrm{TiO}_{2}$ on n - Si in the dark (black curve) vs. under illumination (red curve) showed negligible photoactivity. The bare TiO_{2} on $\mathrm{n}-\mathrm{Si}$ sustained $\sim 400 \mu \mathrm{~A} \cdot \mathrm{~cm}^{-2}$ of anodic current density, but this value is negligible when compared to the conductance behavior of the $\mathrm{Ni} / \mathrm{TiO}_{2} / \mathrm{n}$-Si samples. This observation was general for all of the other thicknesses of TiO_{2} films investigated, i.e., $4 \mathrm{~nm}, 31 \mathrm{~nm}, 44 \mathrm{~nm}$, and 143 nm .

Fig. S10.
Electrochemical and photoelectrochemical behavior of bare ALD-TiO 2 coated Si without a Ni overlayer. (A) Bare ALD- TiO_{2} on p^{+}- Si in contact with $50 \mathrm{mM} \mathrm{K} \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ and 350 $\mathrm{mM} \mathrm{K}_{2} \mathrm{Fe}(\mathrm{CN})_{6}(\mathrm{aq})$ in the dark. (B) Bare ALD- TiO_{2} on p^{+}- Si in the same electrolyte under simulated ELH-type 1.25-Sun illumination.

Fig. S11.
X-ray photoelectron spectroscopy survey scan of the surface of a TiO_{2} overlayer on Si after an Ar-plasma sputtering treatment. Traces of Ni, Ir, Fe and W were present on the surface. The atomic compositions for $\mathrm{O}, \mathrm{C} \mathrm{Ni}, \mathrm{Ti}, \mathrm{W}$, Ir and Fe were $45.5 \%, 31.2 \%$, $5.1 \%, 12.7 \%, 1.9 \%, 0.9 \%$ and 2.8%, respectively.

Fig. S12.
Current-voltage measurements of 68 nm ALD- TiO_{2} on p^{+}-Si using a mercury (Hg) droplet as the top contact, without (A) and with (B) etching of an insulating barrier layer at the surface of the ALD- TiO_{2} film.

Fig. S13.
X-ray photoelectron spectroscopy showing core-level spectra for Ti and Si , as well as the valence-band spectra. High-resolution scan of the Si 2 p core-level spectra and the valence-band spectra of RCA SC-2 cleaned Si (A); Si 2p and Ti 3p core-level spectra of 190 ALD cycles of TiO_{2} on $\mathrm{Si}(\mathrm{B})$; and Ti 3 p core-level spectra and valence-band spectra of 44 nm unannealed TiO_{2} on Si .

Fig. S14.
Tauc plot of ALD-grown TiO_{2} based on its energy-dependent complex refractive indices (n, k). The intersection with the horizontal axis indicates a direct optical gap of $3.34 \pm$ 0.01 eV .

Fig. S15.
Mott-Schottky analysis of the inverse square of the differential capacitance ($C_{\text {diff }}$) vs potential (E) of an ALD-deposited 143 nm thick TiO_{2} film on n^{+}- Si in contact with 50 $\mathrm{mM} \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ and 350 mM of $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$ in $\mathrm{H}_{2} \mathrm{O}$. The analysis was performed using electrochemical impedance spectroscopy.

Fig. S16.
Dark $J-E$ behavior of a nominally 100 nm Ni film on a 4 nm ALD- TiO_{2} film on $\mathrm{p}^{+}-\mathrm{Si}$ in contact with $50 \mathrm{mM} \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ and $350 \mathrm{mM} \mathrm{K}{ }_{4} \mathrm{Fe}(\mathrm{CN})_{6}$ in $\mathrm{H}_{2} \mathrm{O}$, without (A) and with (B) the ALD- TiO_{2} film annealed at $450^{\circ} \mathrm{C}$ for 2 h . The Ni film was deposited after the annealing. The conductivity through the 4 nm TiO 2 film decreased significantly after the film was annealed.

Fig. S17.
X-ray photoelectron spectroscopy of the Ti $2 \mathrm{p}(\mathrm{A})$ and $\mathrm{Ni} 2 \mathrm{p}(\mathrm{B})$ core levels for the surface of 3 nm Ni on TiO_{2}, as well as the $\mathrm{Ti} 2 \mathrm{p}(\mathrm{C})$ for the surface of as-grown TiO_{2}.

References and Notes

1. N. Lewis, An integrated, systems approach to the development of solar fuel generators. Electrochem. Soc. Interface 22, 43-49 (2013).
2. B. A. Pinaud, J. D. Benck, L. C. Seitz, A. J. Forman, Z. Chen, T. G. Deutsch, B. D. James, K. N. Baum, G. N. Baum, S. Ardo, H. Wang, E. Miller, T. F. Jaramillo, Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6, 1983-2002 (2013). doi:10.1039/c3ee40831k
3. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Solar water splitting cells. Chem. Rev. 110, 6446-6473 (2010). doi:10.1021/cr1002326 Medline
4. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions (National Association of Corrosion Engineers, Houston, TX, ed. 2, 1974).
5. J. R. McKone, N. S. Lewis, H. B. Gray, Will solar-driven water-splitting devices see the light of day? Chem. Mater. 26, 407-414 (2014). doi:10.1021/cm4021518
6. S. Hu, C. Xiang, S. Haussener, A. D. Berger, N. S. Lewis, An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 6, 2984-2993 (2013). doi:10.1039/c3ee40453f
7. Y. Nakato, T. Ohnishi, H. Tsubomura, Photo-electrochemical behaviors of semiconductor electrodes coated with thin metal films. Chem. Lett. 3, 883-886 (1975). doi:10.1246/cl.1975.883
8. R. C. Kainthla, Significant efficiency increase in self-driven photoelectrochemical cell for water photoelectrolysis. J. Electrochem. Soc. 134, 841-845 (1987). doi:10.1149/1.2100583
9. M. J. Kenney, M. Gong, Y. Li, J. Z. Wu, J. Feng, M. Lanza, H. Dai, High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 342, 836840 (2013). doi:10.1126/science. 1241327 Medline
10. F. R. F. Fan, R. G. Keil, A. J. Bard, Semiconductor electrodes. 48. Photooxidation of halides and water on n-silicon protected with silicide layers. J. Am. Chem. Soc. 105, 220-224 (1983). doi:10.1021/ja00340a013
11. F. Decker, M. Fracastoro-Decker, W. Badawy, K. Doblhofer, H. Gerischer, The photocurrent-voltage characteristics of the heterojunction combination $\mathrm{n}-\mathrm{Si} / \mathrm{SnO}_{2} /$ redoxelectrolyte. J. Electrochem. Soc. 130, 2173-2179 (1983). doi:10.1149/1.2119547
12. F. Fan, B. Wheeler, A. Bard, R. Noufi, Semiconductor electrodes XXXIX. Techniques for stabilization of n-silicon electrodes in aqueous solution photoelectrochemical cells. J. Electrochem. Soc. 128, 2042-2045 (1981). doi:10.1149/1.2127794
13. N. C. Strandwitz, D. J. Comstock, R. L. Grimm, A. C. Nichols-Nielander, J. Elam, N. S. Lewis, Photoelectrochemical behavior of n-type $\operatorname{Si}(100)$ electrodes coated with thin films of manganese oxide grown by atomic layer deposition. J. Phys. Chem. C 117, 4931-4936 (2013). doi:10.1021/jp311207x
14. K. Sun, N. Park, Z. Sun, J. Zhou, J. Wang, X. Pang, S. Shen, S. Y. Noh, Y. Jing, S. Jin, P. K. L. Yu, D. Wang, Nickel oxide functionalized silicon for efficient photo-oxidation of water. Energy Environ. Sci. 5, 7872-7877 (2012). doi:10.1039/c2ee21708b
15. Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. Chidsey, P. C. McIntyre, Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nat. Mater. 10, 539-544 (2011). doi:10.1038/nmat3047 Medline
16. A. G. Scheuermann, J. D. Prange, M. Gunji, C. E. D. Chidsey, P. C. McIntyre, Effects of catalyst material and atomic layer deposited TiO_{2} oxide thickness on the water oxidation performance of metal-insulator-silicon anodes. Energy Environ. Sci. 6, 2487-2496 (2013). doi:10.1039/c3ee41178h
17. S. Dueñas, H. Castán, H. García, E. S. Andrés, M. Toledano-Luque, I. Mártil, G. GonzálezDíaz, K. Kukli, T. Uustare, J. Aarik, A comparative study of the electrical properties of TiO_{2} films grown by high-pressure reactive sputtering and atomic layer deposition. Semicond. Sci. Technol. 20, 1044-1051 (2005). doi:10.1088/0268-1242/20/10/011
18. Materials and methods are available as supplementary materials on Science Online.
19. Y. Matsumoto, E. Sato, Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Mater. Chem. Phys. 14, 397-426 (1986). doi:10.1016/0254-0584(86)90045-3
20. D. A. Corrigan, Effect of coprecipitated metal ions on the electrochemistry of nickel hydroxide thin films: Cyclic voltammetry in 1M KOH. J. Electrochem. Soc. 136, 723728 (1989). doi:10.1149/1.2096717
21. B. S. Yeo, A. T. Bell, In situ raman study of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen. J. Phys. Chem. C 116, 8394-8400 (2012). doi:10.1021/jp3007415
22. H. N. Ghosh, J. B. Asbury, Y. Weng, T. Lian, Interfacial electron transfer between $\mathrm{Fe}(\mathrm{II})(\mathrm{CN})_{6}{ }^{4}$ and TiO_{2} nanoparticles: Direct electron injection and nonexponential recombination. J. Phys. Chem. B 102, 10208-10215 (1998). doi:10.1021/jp983502w
23. S. A. Campbell, H.-S. Kim, D. C. Gilmer, B. He, T. Ma, W. L. Gladfelter, Titanium dioxide (TiO_{2})-based gate insulators. IBM J. Res. Develop. 43, 383-392 (1999). doi:10.1147/rd.433.0383
24. B. Kalanyan, G. Parsons, Atomic layer deposited oxides for passivation of silicon photoelectrodes for solar photoelectrochemical cells. ECS Trans. 41, 285-292 (2011).
25. M. H. Lee, K. Takei, J. Zhang, R. Kapadia, M. Zheng, Y. Z. Chen, J. Nah, T. S. Matthews, Y. L. Chueh, J. W. Ager, A. Javey, p-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production. Angew. Chem. Int. Ed. Engl. 51, 10760-10764 (2012). doi:10.1002/anie. 201203174 Medline
26. A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, E. Thimsen, Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 10, 456-461 (2011). doi:10.1038/nmat3017 Medline
27. B. Seger, T. Pedersen, A. B. Laursen, P. C. Vesborg, O. Hansen, I. Chorkendorff, Using TiO 2 as a conductive protective layer for photocathodic H_{2} evolution. J. Am. Chem. Soc. 135, 1057-1064 (2013). doi:10.1021/ja309523t Medline
28. S. Avasthi, W. E. McClain, G. Man, A. Kahn, J. Schwartz, J. C. Sturm, Hole-blocking titanium-oxide/silicon heterojunction and its application to photovoltaics. Appl. Phys. Lett. 102, 203901 (2013). doi:10.1063/1.4803446
29. C. C. L. McCrory, S. Jung, J. C. Peters, T. F. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977-16987 (2013). doi:10.1021/ja407115p Medline
30. M. R. Shaner, K. T. Fountaine, H.-J. Lewerenz, Current-voltage characteristics of coupled photodiode-electrocatalyst devices. Appl. Phys. Lett. 103, 143905 (2013). doi:10.1063/1.4822179
31. R. L. Grimm, M. J. Bierman, L. E. O'Leary, N. C. Strandwitz, B. S. Brunschwig, N. S. Lewis, Comparison of the photoelectrochemical behavior of H-terminated and methylterminated $\mathrm{Si}(111)$ surfaces in contact with a series of one-electron, outer-sphere redox couples in $\mathrm{CH}_{3} \mathrm{CN}$. J. Phys. Chem. C 116, 23569-23576 (2012). doi:10.1021/jp308461q
32. J. Mukherjee, S. Peczonczyk, S. Maldonado, Wet chemical functionalization of III-V semiconductor surfaces: Alkylation of gallium phosphide using a Grignard reaction sequence. Langmuir 26, 10890-10896 (2010). doi:10.1021/la100783w Medline
33. M. Perego, G. Seguini, G. Scarel, M. Fanciulli, F. Wallrapp, Energy band alignment at $\mathrm{TiO}_{2} / \mathrm{Si}$ interface with various interlayers. J. Appl. Phys. 103, 043509 (2008). doi:10.1063/1.2885109
