7 research outputs found

    YY1 overexpression is associated with poor prognosis and metastasis-free survival in patients suffering osteosarcoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The polycomb transcription factor Yin Yang 1 (YY1) overexpression can be causally implicated in experimental tumor growth and metastasization. To date, there is no clinical evidence of YY1 involvement in outcome of patients with osteosarcoma. Prognosis of osteosarcoma is still severe and only few patients survive beyond five years. We performed a prospective immunohistochemistry analysis to correlate YY1 immunostaining with metastatic development and survival in a selected homogeneous group of patients with osteosarcoma.</p> <p>Methods</p> <p>We studied 41 patients suffering from osteosarcoma (stage II-IVa). Multivariate analysis was performed using Cox proportional hazard regression to evaluate the correlation between YY1 expression and both metastasis development and mortality.</p> <p>Results</p> <p>YY1 protein is not usually present in normal bone; in contrast, a high number of patients (61%) showed a high score of YY1 positive cells (51-100%) and 39% had a low score (10-50% positive cells). No statistical difference was found in histology, anatomic sites, or response to chemotherapy between the two degrees of YY1 expression. Cox regression analysis demonstrated that the highest score of YY1 expression was predictive of both low metastasis-free survival (HR = 4.690, 95%CI = 1.079-20.396; p = 0.039) and poor overall survival (HR = 8.353, 95%CI = 1.863-37.451 p = 0.006) regardless of the effects of covariates such as age, gender, histology and chemonecrosis.</p> <p>Conclusion</p> <p>Overexpression of YY1 in primary site of osteosarcoma is associated with the occurrence of metastasis and poor clinical outcome.</p

    Identification of Potential Biomarkers for Giant Cell Tumor of Bone Using Comparative Proteomics Analysis

    No full text
    Giant cell tumor of bone can be locally aggressive and occasionally can metastasize in the lungs. To identify new markers predictive of aggressive behavior, we analyzed five patients who developed lung metastasis and five who remained disease free for a minimum of 5 years. Using two-dimensional electrophoresis, we detected 28 differentially expressed spots. Fourteen spots were identified using mass spectrometry, including seven up-regulated and seven down-regulated in metastatic samples and classified according to functional categories. We then selected five proteins involved in cell cycle or apoptosis. Thioredoxin peroxidase, allograft inflammatory factor 1, and ubiquitin E2N had more than threefold up-regulation; glutathione peroxidase 1 had 1.9-fold up-regulation; and heat shock protein 27 showed down-regulation in metastatic samples with a very low P value. After validation and analysis of protein levels, evaluation of clinical impact was assessed in a much wider cohort of primary archival specimens. Immunodetection showed a higher frequency of thioredoxin peroxidase, allograft inflammatory factor 1, ubiquitin E2N, and glutathione peroxidase 1 overexpression in primary tumors that developed into lung metastases or that locally relapsed than in the disease-free group, with variable stain intensity and distribution. Kaplan-Meier analysis showed that high expression of glutathione peroxidase 1 was strongly related to local recurrence and metastasis, suggesting that its up-regulation may identify a subset of high-risk patients with giant cell tumor prone to receive diverse clinical management

    Molecular Diagnosis in Ewing Family Tumors: The Rizzoli Experience—222 Consecutive Cases in Four Years

    No full text
    The Ewing's family of tumors (EFTs) are characterized by chimeric transcripts generated by specific chromosomal rearrangements. The most common fusions are between the EWSR1 gene on chromosome 22 and the ETS family of transcription factors; rarely, FUS (on chromosome 16) substitutes for EWSR1. The detection of specific translocations using molecular analysis is now a routine part of the pathological examination of EFT. Here, we report our experience with molecular diagnosis of EFT during the 4 years (2006–2009) at the Rizzoli Institute. We analyzed 222 consecutive tumors with a presumptive diagnosis of EFT using molecular techniques and IHC. We found five distinct types of EWSR1-FLI1 fusion transcripts resulting from translocation t(11;22), three types of EWSR1-ERG transcripts resulting from t(21;22), and one type of t(2;22) resulting in EWSR1-FEV fusion. Molecular investigation validated 92% of cases ultimately diagnosed as EFT; IHC validated 76% of the cases. Thus, despite the difficulties and limitations associated with both molecular and IHC analysis on fresh and formalin-fixed, paraffin-embedded tissue, a combination of these techniques is the best approach to enhancing the accuracy of EFT diagnosis. We also present our method for choosing which molecular techniques to apply. Finally, we collected the most prevalent breakpoints reported in the literature, indicating which exons are involved, the sequence breakpoints, and the NCBI reference sequences
    corecore