979 research outputs found

    Statistical models for market segmentation

    Get PDF
    It is an essential element of market research that customer preferences are considered and the heterogeneity of these preferences is recognized. By segmenting the market into homogeneous clusters the preferences of customers is addressed. Latent class methodology for conjoint analysis, proposed by Green (2000), is one of the several conjoint segmentation procedures that overcome the limitations of aggregate analysis and priori segmentation. This approach proposes the proportional odds model as a proper statistical model for ordinal categorical data in which the item attributes are included in the linear predictor. The likelihood is maximized through the EM algorithm. This paper considers two extensions of this methodology that incorporate individual characteristics into the models.peer-reviewe

    Off-season Production of Tomato (Lycopersicon esculentum L.) Under Different Shading and Mulching Materials

    Get PDF
    Tomatoes during rainy season have low production in open field; thus, supply is low, consequently, the price is high. Potential of protected production should be explored, the study conducted to find best eco-friendly net covers and mulch on growth and yield of two tomato varieties under off- season production. Specifically, determined the best cover, variety and mulching material to achieve optimum yield of tomato plants, interaction and correlation effects of microclimates like temperature and relative humidity under the tunnel, on the growth and yield of tomato and highest net income among different treatments and treatments combinations. Split-Split Plot in Factorial Randomized Complete Block Design using three blocks, threefloating row covers (UV Film, EFNC Blue, EFNC Green), two tomato varieties (Marimar F1 and Diamante Max F1) three mulching materials (Plastic mulch, Sawdust, Carbonized Rice Hull), was employed. Eco-friendly net covers (EFNC) did not significantly affect the growth and yield of tomato. Similarly, the two varieties did not differ significantly in growth and yield, but mulching materials significantly affected the growth and yield parameter, Carbonized Rice Hull increased number of flowers, fruiting percentage and fruits developed, plastic mulch produced highest yield with 3681.13 kg/ha. No significant interaction effect among eco-friendly cover, variety, and mulch on growth and yield parameter. Higher temperatures inside the tunnel improved the growth of tomato plants but made the fruits lighter and lowered yield and income per hectare. High relative humidity (%) inside the tunnel increased weight of marketable fruits per plot and yield per hectare. Keywords: eco-friendly net covers, mulching materials, relative humidity, temperature, UV film

    Observing the evolution of a quantum system that does not evolve

    Full text link
    This article deals with the problem of gathering information on the time evolution of a single metastable quantum system whose evolution is impeded by the quantum Zeno effect. It has been found it is in principle possible to obtain some information on the time evolution and, depending on the specific system, even to measure its average decay rate, even if the system does not undergo any evolution at all.Comment: Two over three PRA referees didn't like the old title... And no more quantum circuits in the new versio

    Quantum theory of intersubband polarons

    Get PDF
    We present a microscopic quantum theory of intersubband polarons, quasiparticles originated from the coupling between intersubband transitions and longitudinal optical phonons. To this aim we develop a second quantized theory taking into account both the Fr\"ohlich interaction between phonons and intersubband transitions and the Coulomb interaction between the intersubband transitions themselves. Our results show that the coupling between the phonons and the intersubband transitions is extremely intense, thanks both to the collective nature of the intersubband excitations and to the natural tight confinement of optical phonons. Not only the coupling is strong enough to spectroscopically resolve the resonant splitting between the modes (strong coupling regime), but it can become comparable to the bare frequency of the excitations (ultrastrong coupling regime). We thus predict the possibility to exploit intersubband polarons both for applied optoelectronic research, where a precise control of the phonon resonances is needed, and also to observe fundamental quantum vacuum physics, typical of the ultrastrong coupling regime

    Comparison of Blood and Brain Mercury Levels in Infant Monkeys Exposed to Methylmercury or Vaccines Containing Thimerosal

    Get PDF
    Thimerosal is a preservative that has been used in manufacturing vaccines since the 1930s. Reports have indicated that infants can receive ethylmercury (in the form of thimerosal) at or above the U.S. Environmental Protection Agency guidelines for methylmercury exposure, depending on the exact vaccinations, schedule, and size of the infant. In this study we compared the systemic disposition and brain distribution of total and inorganic mercury in infant monkeys after thimerosal exposure with those exposed to MeHg. Monkeys were exposed to MeHg (via oral gavage) or vaccines containing thimerosal (via intramuscular injection) at birth and 1, 2, and 3 weeks of age. Total blood Hg levels were determined 2, 4, and 7 days after each exposure. Total and inorganic brain Hg levels were assessed 2, 4, 7, or 28 days after the last exposure. The initial and terminal half-life of Hg in blood after thimerosal exposure was 2.1 and 8.6 days, respectively, which are significantly shorter than the elimination half-life of Hg after MeHg exposure at 21.5 days. Brain concentrations of total Hg were significantly lower by approximately 3-fold for the thimerosal-exposed monkeys when compared with the MeHg infants, whereas the average brain-to-blood concentration ratio was slightly higher for the thimerosal-exposed monkeys (3.5 ± 0.5 vs. 2.5 ± 0.3). A higher percentage of the total Hg in the brain was in the form of inorganic Hg for the thimerosal-exposed monkeys (34% vs. 7%). The results indicate that MeHg is not a suitable reference for risk assessment from exposure to thimerosal-derived Hg. Knowledge of the toxicokinetics and developmental toxicity of thimerosal is needed to afford a meaningful assessment of the developmental effects of thimerosal-containing vaccines

    Quantum limit of photothermal cooling

    Full text link
    We study the problem of cooling a mechanical oscillator using the photothermal (bolometric) force. Contrary to previous attempts to model this system, we take into account the noise effects due to the granular nature of photon absorption. This allows us to tackle the cooling problem down to the noise dominated regime and to find reasonable estimates for the lowest achievable phonon occupation in the cantilever

    Structure formation in the presence of dark energy perturbations

    Full text link
    We study non-linear structure formation in the presence of dark energy. The influence of dark energy on the growth of large-scale cosmological structures is exerted both through its background effect on the expansion rate, and through its perturbations as well. In order to compute the rate of formation of massive objects we employ the Spherical Collapse formalism, which we generalize to include fluids with pressure. We show that the resulting non-linear evolution equations are identical to the ones obtained in the Pseudo-Newtonian approach to cosmological perturbations, in the regime where an equation of state serves to describe both the background pressure relative to density, and the pressure perturbations relative to the density perturbations as well. We then consider a wide range of constant and time-dependent equations of state (including phantom models) parametrized in a standard way, and study their impact on the non-linear growth of structure. The main effect is the formation of dark energy structure associated with the dark matter halo: non-phantom equations of state induce the formation of a dark energy halo, damping the growth of structures; phantom models, on the other hand, generate dark energy voids, enhancing structure growth. Finally, we employ the Press-Schechter formalism to compute how dark energy affects the number of massive objects as a function of redshift.Comment: 21 pages, 8 figures. Matches published version, with caption of Fig. 6 correcte

    Physical approximations for the nonlinear evolution of perturbations in dark energy scenarios

    Full text link
    The abundance and distribution of collapsed objects such as galaxy clusters will become an important tool to investigate the nature of dark energy and dark matter. Number counts of very massive objects are sensitive not only to the equation of state of dark energy, which parametrizes the smooth component of its pressure, but also to the sound speed of dark energy as well, which determines the amount of pressure in inhomogeneous and collapsed structures. Since the evolution of these structures must be followed well into the nonlinear regime, and a fully relativistic framework for this regime does not exist yet, we compare two approximate schemes: the widely used spherical collapse model, and the pseudo-Newtonian approach. We show that both approximation schemes convey identical equations for the density contrast, when the pressure perturbation of dark energy is parametrized in terms of an effective sound speed. We also make a comparison of these approximate approaches to general relativity in the linearized regime, which lends some support to the approximations.Comment: 15 pages, 2 figure
    corecore