7 research outputs found

    The Vagal Nerve, Inflammation, and Diabetes—A Holy Triangle

    No full text
    Type 2 diabetic mellitus (T2DM) is a common chronic disease and a substantial risk factor of other fatal illnesses. At its core is insulin resistance, where chronic low-level inflammation is among its main causes. Thus, it is crucial to modulate this inflammation. This review paper provides scientific neuroimmunological evidence on the protective roles of the vagal nerve in T2DM. First, the vagus inhibits inflammation in a reflexive manner via neuroendocrine and neuroimmunological routes. This may also occur at the level of brain networks. Second, studies have shown that vagal activity, as indexed by heart-rate variability (HRV), is inversely related to diabetes and that low HRV is a predictor of T2DM. Finally, some emerging evidence shows that vagal nerve activation may reduce biomarkers and processes related to diabetes. Future randomized controlled trials are needed to test the effects of vagal nerve activation on T2DM and its underlying anti-inflammatory mechanisms

    Immunotherapy during the Immediate Perioperative Period: A Promising Approach against Metastatic Disease

    No full text
    Tumor excision is a necessary life-saving procedure in most solid cancers. However, surgery and the days before and following it, known as the immediate perioperative period (IPP), entail numerous prometastatic processes, including the suppression of antimetastatic immunity and direct stimulation of minimal residual disease (MRD). Thus, the IPP is pivotal in determining long-term cancer outcomes, presenting a short window of opportunity to circumvent perioperative risk factors by employing several therapeutic approaches, including immunotherapy. Nevertheless, immunotherapy is rarely examined or implemented during this short timeframe, due to both established and hypothetical contraindications to surgery. Herein, we analyze how various aspects of the IPP promote immunosuppression and progression of MRD, and how potential IPP application of immunotherapy may interact with these deleterious processes. We discuss the feasibility and safety of different immunotherapies during the IPP with a focus on the latest approaches of immune checkpoint inhibition. Last, we address the few past and ongoing clinical trials that exploit the IPP timeframe for anticancer immunotherapy. Accordingly, we suggest that several specific immunotherapies can be safely and successfully applied during the IPP, alone or with supporting interventions, which may improve patients’ resistance to MRD and overall survival
    corecore