627 research outputs found

    Prediction of the derivative discontinuity in density functional theory from an electrostatic description of the exchange and correlation potential

    Get PDF
    We propose a new approach to approximate the exchange and correlation (XC) functional in density functional theory. The XC potential is considered as an electrostatic potential, generated by a fictitious XC density, which is in turn a functional of the electronic density. We apply the approach to develop a correction scheme that fixes the asymptotic behavior of any approximated XC potential for finite systems. Additionally, the correction procedure gives the value of the derivative discontinuity; therefore it can directly predict the fundamental gap as a ground-state property.Comment: 5 pages, 4 figure

    Threshold photoelectron photoion coincidence spectroscopy of trichloroethene and tetrachloroethene

    Get PDF
    The threshold photoelectron, the threshold photoelectron photoion coincidence and ion breakdown spectra of trichloroethene and tetrachloroethene have been recorded from 9 – 22 eV. Comparisons with the equivalent data for the three dichloroethene molecules and theoretical calculations highlight the nature of the orbitals involved during photoionisation in this energy range. The ground electronic state of C2_2HCl3+_3^+ (C2_2Cl4+_4^+) is bound, with excited valence states dissociating to C2_2HCl2+_2^+ (C2_2Cl3+_3^+) and C2_2HCl+^+ (C2_2Cl2+_2^+). Appearance energies suggest that C2_2HCl+^+ forms from C2_2HCl3+_3^+ by loss of two chlorine atoms, whereas C2_2Cl2+_2^+ forms from C2_2Cl4+_4^+ by loss of a Cl2_2 molecule. The translational kinetic energy release into C2_2HCl2+_2^+ (C2_2Cl3+_3^+) + Cl is determined as a function of energy. In both cases, the fraction of the available energy released into translational energy of the two products decreases as the photon energy increases

    Absolute Electron Scattering Cross Sections for the CF2 Radical

    Get PDF
    Using a crossed electron-molecular beam experiment, featuring a skimmed nozzle beam with pyrolytic radical production, absolute elastic cross sections for electron scattering from the CF2 molecule have been measured. A new technique for placing measured cross sections on an absolute scale is used for molecular beams produced as skimmed supersonic jets. Absolute differential cross sections for CF2 are reported for incident electron energies of 30–50 eV and over an angular range of 20–135 deg. Integral cross sections are subsequently derived from those data. The present data are compared to new theoretical predictions for the differential and integral scattering cross sections, as calculated with the Schwinger multichannel variational method using the static-exchange and static-exchange plus polarization approximations

    Laser induced electron diffraction: a tool for molecular orbital imaging

    Full text link
    We explore the laser-induced ionization dynamics of N2 and CO2 molecules subjected to a few-cycle, linearly polarized, 800\,nm laser pulse using effective two-dimensional single active electron time-dependent quantum simulations. We show that the electron recollision process taking place after an initial tunnel ionization stage results in quantum interference patterns in the energy resolved photo-electron signals. If the molecule is initially aligned perpendicular to the field polarization, the position and relative heights of the associated fringes can be related to the molecular geometrical and orbital structure, using a simple inversion algorithm which takes into account the symmetry of the initial molecular orbital from which the ionized electron is produced. We show that it is possible to extract inter-atomic distances in the molecule from an averaged photon-electron signal with an accuracy of a few percents

    The photoionization dynamics of the three structural isomers of dichloroethene

    Get PDF
    Using tunable vacuum-UV radiation from a synchrotron, the threshold photoelectron spectrum, threshold photoelectron photoion coincidence spectrum and ion breakdown diagram of the 1,1, cis-1,2 and trans-1,2 isomers of C2_2H2_2Cl2_2 have been recorded in the range 9-23 eV. The energies of the peaks in the threshold photoelectron spectrum are in good agreement with outer-valence Greens function caculations. The major difference between the isomers, both predicted and observed experimentally is that the F and G states of C2_2H2_2Cl2+_2^+ are approximately degenerate for 1,1 and trans-1,2, but well separated for the cis-1,2 isomer. The ground and low-lying valence states of C2_2H2_2Cl2+_2^+ are bound, with higher-lying states dissociating to C2_2H2_2Cl+^+ or C2_2H2+_2^+. The translational kinetic energy release into C2_2H2_2Cl+^+ + Cl is determined as a function of energy. Isolated-state behaviour for the low-lying electronic states of C2_2H2_2Cl2+_2^+ becomes more statistical as the energy increases

    Time-resolved multi-mass ion imaging: femtosecond UV-VUV pump-probe spectroscopy with the PImMS camera

    Get PDF
    The Pixel-Imaging Mass Spectrometry (PImMS) camera allows for 3D charged particle imaging measurements, in which the particle time-of-flight is recorded along with (x,y)(x,y) position. Coupling the PImMS camera to an ultrafast pump-probe velocity-map imaging spectroscopy apparatus therefore provides a route to time-resolved multi-mass ion imaging, with both high count rates and large dynamic range, thus allowing for rapid measurements of complex photofragmentation dynamics. Furthermore, the use of vacuum ultraviolet wavelengths for the probe pulse allows for an enhanced observation window for the study of excited state molecular dynamics in small polyatomic molecules having relatively high ionization potentials. Herein, preliminary time-resolved multi-mass imaging results from C2_2F3_3I photolysis are presented. The experiments utilized femtosecond UV and VUV (160.8~nm and 267~nm) pump and probe laser pulses in order to demonstrate and explore this new time-resolved experimental ion imaging configuration. The data indicates the depth and power of this measurement modality, with a range of photofragments readily observed, and many indications of complex underlying wavepacket dynamics on the excited state(s) prepared

    First-principles modelling of molecular single-electron transistors

    Full text link
    We present a first-principles method for calculating the charging energy of a molecular single-electron transistor operating in the Coulomb blockade regime. The properties of the molecule are modeled using density-functional theory, the environment is described by a continuum model, and the interaction between the molecule and the environment are included through the Poisson equation. The model is used to calculate the charge stability diagrams of a benzene and C60_{60} molecular single-electron transistor

    LAYANAN ADMINISTRASI DALAM PELAKSANAAN KURIKULUM DI MADRASAH TSANAWIYAH NURUL HUDA MUARO JAMBI

    Get PDF
    Penelitian ini membahas tentang layanan administrasi yang ada di Madrasah Tsanawiyah Nurul Huda Muaro Jambi. Penelitian ini merupakan penelitian kualitatif deskriptif dengan menggunakan teknik pengumpulan data observasi, wawancara, dan dokumentasi, sedangkan teknik analisis data yang digunakan adalah reduksi data, penyajian data dan penarikan kesimpulan. Teknik keabsahan data yaitu memakai triangulasi sumber, triangulasi teknik dan triangulasi waktu. Layanan administrasi adalah layanan yang harus diterapkan oleh pihak sekolah dalam mendukung kegiatan kurikulum yang ada di Madrasah. Hasil penelitian menunjukkan bahwa terdapat Kendala yang menyebabkan layanan administrasi di madrasah tidak berjalan dengan efektif dan efisien, baik layanan internal maupun layanan eksternal. Faktor yang mempengaruhi kinerja staff administrasi ialah kurangnya personil dan kurangnya sarana dan prasarana yang menunjang kerja staff. Upaya yang dilakukan kepala sekolah dan kepala tata usaha dalam meningkatkan layanan administrasi yaitu mengadakan musyawarah terhadap seluruh anggota yang terlibat dalam sekolah untuk mendapatkan solusi yang layak dalam kinerjanya

    SAR Performance of Rectangular Microstrip Antenna for Breast Cancer Hyperthermia Treatment with Different Period of Treatment Procedure

    Get PDF
    Cancer treatment using hyperthermia techniques recently become the interest among researchers in investigating and improving certain deficiencies of the treatment since this treatment has the potential to denaturate cancer into necrotic tissue. Hyperthermia uses high heat from 41℃ to 45℃ at a certain period of time. It is difficult to control the focus position distance of heat distribution on the treated tissue. Therefore, this paper presents the rectangular microstrip as hyperthermia applicator, which deliver the heat on the targeted treated breast cancer tissue with different period of time in order to obtain sufficient heat or SAR distribution. Sim4LifeLight software simulator is used to design, simulate and generate the specific absorption rate (SAR) distribution on the treated tissue. Three frequencies of 434MHz, 915MHz and 2450MHz are used to be compared. Based on the results, 2450MHz shows better performance than the other two frequencies. However, there is a certain limitation, such as skin burn and unwanted hotspots, that need to be further improved. The cancer is sufficiently heating at different operating frequencies at different periods of procedures
    • …
    corecore