23,736 research outputs found
Investigation into O(N) Invariant Scalar Model Using Auxiliary-Mass Method at Finite Temperature
Using auxiliary-mass method, O(N) invariant scalar model is investigated at
finite temperature. This mass and an evolution equation allow us to calculate
an effective potential without an infrared divergence. Second order phase
transition is indicated by the effective potential. The critical exponents are
determined numerically.Comment: LaTex 8 pages with 3 eps figure
On the Convergence of the Expansion of Renormalization Group Flow Equation
We compare and discuss the dependence of a polynomial truncation of the
effective potential used to solve exact renormalization group flow equation for
a model with fermionic interaction (linear sigma model) with a grid solution.
The sensitivity of the results on the underlying cutoff function is discussed.
We explore the validity of the expansion method for second and first-order
phase transitions.Comment: 12 pages with 10 EPS figures included; revised versio
Renormalization Group and Universality
It is argued that universality is severely limited for models with multiple
fixed points. As a demonstration the renormalization group equations are
presented for the potential and the wave function renormalization constants in
the scalar field theory. Our equations are superior compared with the
usual approach which retains only the contributions that are non-vanishing in
the ultraviolet regime. We find an indication for the existence of relevant
operators at the infrared fixed point, contrary to common expectations. This
result makes the sufficiency of using only renormalizable coupling constants in
parametrizing the long distance phenomena questionable.Comment: 32pp in plain tex; revised version to appear in PR
On the Connection Between Momentum Cutoff and Operator Cutoff Regularizations
Operator cutoff regularization based on the original Schwinger's proper-time
formalism is examined. By constructing a regulating smearing function for the
proper-time integration, we show how this regularization scheme simulates the
usual momentum cutoff prescription yet preserves gauge symmetry even in the
presence of the cutoff scales. Similarity between the operator cutoff
regularization and the method of higher (covariant) derivatives is also
observed. The invariant nature of the operator cutoff regularization makes it a
promising tool for exploring the renormalization group flow of gauge theories
in the spirit of Wilson-Kadanoff blocking transformation.Comment: 28 pages in plain TeX, no figures. revised and expande
Flow Equations for U_k and Z_k
By considering the gradient expansion for the wilsonian effective action S_k
of a single component scalar field theory truncated to the first two terms, the
potential U_k and the kinetic term Z_k, I show that the recent claim that
different expansion of the fluctuation determinant give rise to different
renormalization group equations for Z_k is incorrect. The correct procedure to
derive this equation is presented and the set of coupled differential equations
for U_k and Z_k is definitely established.Comment: 5 page
Logsig-RNN: a novel network for robust and efficient skeleton-based action recognition
This paper contributes to the challenge of skeleton-based human action recognition in
videos. The key step is to develop a generic network architecture to extract discriminative
features for the spatio-temporal skeleton data. In this paper, we propose a novel module,
namely Logsig-RNN, which is the combination of the log-signature layer and recurrent
type neural networks (RNNs). The former one comes from the mathematically principled
technology of signatures and log-signatures as representations for streamed data, which
can manage high sample rate streams, non-uniform sampling and time series of variable
length. It serves as an enhancement of the recurrent layer, which can be conveniently
plugged into neural networks. Besides we propose two path transformation layers to
significantly reduce path dimension while retaining the essential information fed into
the Logsig-RNN module. (The network architecture is illustrated in Figure 1 (Right).)
Finally, numerical results demonstrate that replacing the RNN module by the LogsigRNN module in SOTA networks consistently improves the performance on both Chalearn
gesture data and NTU RGB+D 120 action data in terms of accuracy and robustness.
In particular, we achieve the state-of-the-art accuracy on Chalearn2013 gesture data by
combining simple path transformation layers with the Logsig-RNN
T Cell-Tumor Interaction Directs the Development of Immunotherapies in Head and Neck Cancer
The competent immune system controls disease effectively due to induction, function, and regulation of effector lymphocytes. Immunosurveillance is exerted mostly by cytotoxic T-lymphocytes (CTLs) while specific immune suppression is associated with tumor malignancy and progression. In squamous cell carcinoma of the head and neck, the presence, activity, but also suppression of tumor-specific CTL have been demonstrated. Functional CTL may exert a selection pressure on the tumor cells that consecutively escape by a combination of molecular and cellular evasion mechanisms. Certain of these mechanisms target antitumor effector cells directly or indirectly by affecting cells that regulate CTL function. This results in the dysfunction or apoptosis of lymphocytes and dysregulated lymphocyte homeostasis. Another important tumor-escape mechanism is to avoid recognition by dysregulation of antigen processing and presentation. Thus, both induction of functional CTL and susceptibility of the tumor and its microenvironment to become T cell targets should be considered in CTL-based immunotherapy
Quantitative study of valence and configuration interaction parameters of the Kondo semiconductors CeM2Al10 (M = Ru, Os and Fe) by means of bulk-sensitive hard x-ray photoelectron spectroscopy
The occupancy of the 4f^n contributions in the Kondo semiconductors
CeM2Al10(M = Ru, Os and Fe) has been quantitatively determined by means of
bulk-sensitive hard x-ray photoelectron spectroscopy (HAXPES) on the Ce 3d core
levels. Combining a configuration interaction scheme with full multiplet
calculations allowed to accurately describe the HAXPES data despite the
presence of strong plasmon excitations in the spectra. The configuration
interaction parameters obtained from this analysis -- in particular the
hybridization strength V_eff and the effective f binding energy Delta_f --
indicate a slightly stronger exchange interaction in CeOs2Al10 compared to
CeRu2Al10, and a significant increase in CeFe2Al10. This verifies the
coexistence of a substantial amount of Kondo screening with magnetic order and
places the entire CeM2Al10 family in the region of strong exchange
interactions.Comment: 9 pages, 4 figures, submitted to Physical Review
Scalable Mining of Common Routes in Mobile Communication Network Traffic Data
A probabilistic method for inferring common routes from mobile communication network traffic data is presented. Besides providing mobility information, valuable in a multitude of application areas, the method has the dual purpose of enabling efficient coarse-graining as well as anonymisation by mapping individual sequences onto common routes. The approach is to represent spatial trajectories by Cell ID sequences that are grouped into routes using locality-sensitive hashing and graph clustering. The method is demonstrated to be scalable, and to accurately group sequences using an evaluation set of GPS tagged data
- …