1,053 research outputs found
Erchen Decoction Prevents High-Fat Diet Induced Metabolic Disorders in C57BL/6 Mice
Erchen decoction (ECD) is a traditional Chinese medicine prescription, which is used in the treatment of obesity, hyperlipidemia, fatty liver, diabetes, hypertension, and other diseases caused by retention of phlegm dampness. In this study we investigated the potential mechanism of ECD, using metabolism-disabled mice induced by high-fat diet. Body weight and abdominal circumference were detected. OGTT was measured by means of collecting blood samples from the tail vein. Blood lipid levels and insulin were measured using biochemical assay kit. Real-time PCR was used to measure the CDKAL1 gene expression and western blot was used to measure the protein expression. Through the research, it was found that ECD showed markedly lower body weight and abdominal circumference than those in the HFD group. Consistently, we observed that ECD significantly improved glucose tolerance, promoted the secretion of insulin and decreased the level of TG, TC level. Meanwhile, we observed significantly increased CDKAL1 mRNA and protein level in the ECD group. Therefore, we speculate that the potential molecular mechanism of ECD is to promote the CDKAL1 expression, ameliorate islet cell function, and raise insulin levels to regulate the metabolic disorder
Role of the Diphosphine Chelate in Emissive, Charge-Neutral Iridium(III) Complexes
A class of neutral tris-bidentate Ir(III) metal complexes incorporating a diphosphine as a chelate is prepared and characterized here for the first time. Treatment of [Ir(dppb)(tht)Cl3] (1) with fppzH afforded the dichloride complexes, trans-(Cl,Cl)[Ir(dppb)(fppz)Cl2] (2) and cis-(Cl,Cl)[Ir(dppb)(fppz)Cl2] (3). The reaction of 3 with the dianionic chelate precursor bipzH2 or mepzH2, in DMF gave the complex [Ir(dppb)(fppz)(bipz)] (4) or [Ir(dppb)(fppz)(mepz)] (5), respectively. In contrast, a hydride complex [Ir(dppb)(fppz)(bipzH)H] (6) was isolated instead of 4 in protic solvent, namely: DGME. All complexes 2 - 6 are luminescent in powder forms and thin films where the dichlorides (2, 3) emit with maxima at 590-627 nm (orange) and quantum yields (Q.Y.s) up to 90% whereas the tris-bidentate (4, 5) and hydride (6) complexes emit at 455-458 nm (blue) with Q.Y.s up to 70%. Hybrid TD-DFT calculations showed considerable MLCT contribution to the orange-emitting 2 and 3 but substantial ligand-centered 3ππ* transition character in the blue-emitting 4 - 6. The dppb does not participate to these radiative transitions in 4 - 6, but it provides the rigidity and steric bulk needed to promote the luminescence by suppressing the self-quenching in the solid state. Fabrication of an OLED with dopant 5 gave a deep blue CIE chromaticity of (0.16, 0.15). Superior blue emitters, which are vital in OLED applications, may be found in other neutral Ir(III) complexes containing phosphine chelates
3-(4-Bromophenyl)-4-[2-(4-nitrophenyl)hydrazinyl]furan-2(5H)-one
In the title compound, C16H12BrN3O4, the furan-2(5H)-one ring forms a dihedral angle of 33.19 (9)° with the 4-bromobenzene unit and is nearly perpendicular to the 4-nitrobenzene segment, making a dihedral angle of 89.93 (10)°. In the crystal, N—H⋯O hydrogen bonds link the molecules, generating an infinite chain along [010]. The chains are linked into a three-dimensional network by C—H⋯O, C—H⋯π and π–π contacts [centroid–centroid separation = 3.805 (2) Å]
Effect of SGLT-2 inhibitors on arrhythmia events: insight from an updated secondary analysis of > 80,000 patients (the SGLT2i-Arrhythmias and Sudden Cardiac Death)
OBJECTIVE
We aimed to assess the effect of SGLT2i on arrhythmias by conducting a meta-analysis using data from randomized controlled trials(RCTs).
BACKGROUND
Sodium-glucose co-transporter 2 inhibitors (SGLT2i) have shown cardioprotective effects via multiple mechanisms that may also contribute to decrease arrhythmias risk.
METHODS
We searched in databases (PubMed, Embase, Cochrane Library, and clinicaltrials.gov) up to April 2023. RCTs comparing SGLT2i with placebo were included. The effects of SGLT2i on atrial fibrillation(AF), atrial flutter(AFL), composite AF/AFL, ventricular fibrillation(VF), ventricular tachycardia(VT), ventricular extrasystoles(VES), sudden cardiac death(SCD) and composite VF/VT/SCD were evaluated.
RESULTS
33 placebo-controlled RCTs were included, comprising 88,098 patients (48,585 in SGLT2i vs. 39,513 in placebo). The mean age was 64.9 ± 9.4 years, 63.0% were male. The mean follow-up was 1.4 ± 1.1 years. The pooled-results showed that SGLT2i was associated with a significantly lower risk of AF [risk ratio(RR): 0.88, 95% confidence interval(CI) 0.78-1.00, P = 0.04] and composite AF/AFL (RR: 0.86, 95%CI 0.77-0.96, P = 0.01). This favorable effect appeared to be substantially pronounced in patients with HFrEF, male gender, dapagliflozin, and > 1 year follow-up. For SCD, only in heart failure patients, SGLT2i were found to be associated with a borderline lower risk of SCD (RR: 0.67, P = 0.05). No significant effects of SGLT2i on other ventricular arrhythmic outcomes were found.
CONCLUSIONS
SGLT2i lowers the risks of AF and AF/AFL, and this favorable effect appeared to be particularly pronounced in patients with HFrEF, male gender, dapagliflozin, and longer follow-up (> 1 year). SGLT2i lowers the risk of SCD only in heart failure patients
Bacterial Community Diversity and Screening of Growth-Affecting Bacteria From Isochrysis galbana Following Antibiotic Treatment
Algal cultures are generally co-cultures of algae and bacteria, especially when considering outdoor cultivation. However, the effects of associated bacteria on algal growth remain largely unexplored, particularly in the context of Isochrysis galbana. In the present study, we investigated the effects of antibiotic on the growth of I. galbana and its associated bacterial community. We found advantageous responses of I. galbana to antibiotic exposure, evidenced by the increased growth, and the maximal photochemical efficiency of PSII (Fv/Fm). Since antibiotics can cause major disturbances within bacterial community, we further conducted 16S rDNA amplicon sequencing to determine the changes of bacterial community diversity following antibiotic treatment. We found that antibiotic treatment considerably and negatively affected the abundance and diversity of bacterial community, and 17 significantly decreased bacterial species in the antibiotic-treated medium, including Pseudomonas stutzeri, were identified. Further co-culture experiments revealed that P. stutzeri inhibited the growth of I. galbana, and the inhibitory activity was retained in the cell-free bacterial filtrate. These results indicated that the negative effect of bacteria was not exclusively transmitted through contact with I. galbana but could be also mediated via secretory compounds. Taken together, our findings not only fully characterized the bacterial community associated with I. galbana and how the bacterial community changed in response to antibiotic perturbations, but also provided a valuable information about the interactions between I. galbana and its associated bacteria, which might help improve the yield, and quality of I. galbana during its cultivation processes
Overexpression of YAP 1 contributes to progressive features and poor prognosis of human urothelial carcinoma of the bladder
BACKGROUND: Yes-associated protein 1 (YAP 1), the nuclear effector of the Hippo pathway, is a key regulator of organ size and a candidate human oncogene in multiple tumors. However, the expression dynamics of YAP 1 in urothelial carcinoma of the bladder (UCB) and its clinical/prognostic significance are unclear. METHODS: In this study, the methods of quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting and immunohistochemistry (IHC) were utilized to investigate mRNA/ protein expression of YAP 1 in UCBs. Spearman’s rank correlation, Kaplan-Meier plots and Cox proportional hazards regression model were used to analyze the data. RESULTS: Up-regulated expression of YAP 1 mRNA and protein was observed in the majority of UCBs by qRT-PCR and Western blotting, when compared with their paired normal bladder tissues. By IHC, positive expression of YAP 1 was examined in 113/213 (53.1%) of UCBs and in 6/86 (7.0%) of normal bladder specimens tissues. Positive expression of YAP 1 was correlated with poorer differentiation, higher T classification and higher N classification (P < 0.05). In univariate survival analysis, a significant association between positive expression of YAP 1 and shortened patients’ survival was found (P < 0.001). In different subsets of UCB patients, YAP 1 expression was also a prognostic indicator in patients with grade 2 (P = 0.005) or grade 3 (P = 0.046) UCB, and in patients in pT1 (P = 0.013), pT2-4 (P = 0.002), pN- (P < 0.001) or pT2-4/pN- (P = 0.004) stage. Importantly, YAP 1 expression (P = 0.003) together with pT and pN status (P< 0.05) provided significant independent prognostic parameters in multivariate analysis. CONCLUSIONS: Our findings provide evidences that positive expression of YAP 1 in UCB may be important in the acquisition of an aggressive phenotype, and it is an independent biomarker for poor prognosis of patients with UCB
Screening and identification of miRNAs related to sexual differentiation of strobili in Ginkgo biloba by integration analysis of small RNA, RNA, and degradome sequencing
Abstract
Background
Ginkgo biloba, a typical dioecious plant, is a traditional medicinal plant widely planted. However, it has a long juvenile period, which severely affected the breeding and cultivation of superior ginkgo varieties.
Results
In order to clarify the complex mechanism of sexual differentiation in G. biloba strobili. Here, a total of 3293 miRNAs were identified in buds and strobili of G. biloba, including 1085 known miRNAs and 2208 novel miRNAs using the three sequencing approaches of transcriptome, small RNA, and degradome. Comparative transcriptome analysis screened 4346 and 7087 differentially expressed genes (DEGs) in male buds (MB) _vs_ female buds (FB) and microstrobilus (MS) _vs_ ovulate strobilus (OS), respectively. A total of 6032 target genes were predicted for differentially expressed miRNA. The combined analysis of both small RNA and transcriptome datasets identified 51 miRNA-mRNA interaction pairs that may be involved in the process of G. biloba strobili sexual differentiation, of which 15 pairs were verified in the analysis of degradome sequencing.
Conclusions
The comprehensive analysis of the small RNA, RNA and degradome sequencing data in this study provided candidate genes and clarified the regulatory mechanism of sexual differentiation of G. biloba strobili from multiple perspectives
- …