1,307 research outputs found

    Modelling localised fracture of reinforced concrete structures

    Get PDF
    This paper presents a robust finite element procedure for simulating the localised fracture of reinforced concrete members. In this new model the concrete member is modelled as an assembly of plain concrete, reinforcing steel bar and bond-link elements. The 4-node quadrilateral elements are used for 2D modelling of plain concrete elements, in which the extended finite element method is adopted to simulate the formation and growth of individual cracks. The reinforcing steel bars are modelled by using a 3-node beam-column element. 2-node bond-link elements are employed for modelling the interaction between plain concrete and reinforcing steel bar elements. It is evident that the nonlinear procedure proposed in this paper can properly model the formation and propagation of individual localised cracks within the reinforced concrete structures. The model presented in this paper enables the researchers and designers to access the integrity of reinforced concrete members under extreme loading conditions by using mesh independent extended finite element method.The support of the Engineering and Physical Sciences Research Council of Great Britain under Grant No. EP/I031553/1

    New Rh-ZnO/carbon nanotubes catalyst for methanol synthesis

    Get PDF
    A new catalyst for methanol synthesis, ZnO-promoted rhodium supported on carbon nanotubes, was developed. It was found that the Rh-ZnO/CNTs catalyst had high activity of 411.4 mg CH3OH/g/cat/h and selectivity of 96.7 % for methanol at 1 MPa and 523 K. The activity of this catalyst is much higher than that of NC 207 catalyst at the same reaction conditions. It was suggested that the multi-walled structure CNTs favored both the couple transfer of the proton and, electron over the surface of the catalyst and the uptake of hydrogen which was favorable to methanol synthesis

    IN-SITU RAMAN-SPECTROSCOPIC STUDY OF OXYGEN ADSPECIES ON A TH-LA-O-X CATALYST FOR METHANE OXIDATIVE COUPLING REACTION

    Get PDF
    The superoxide adspecies O-2(-) is identified by in situ Raman spectroscopy on a functioning Th-La-O-x catalyst for methane oxidative coupling reaction at 680-860 degrees C

    Origin of Shifts in the Surface Plasmon Resonance Frequencies for Au and Ag Nanoparticles

    Full text link
    Origin of shifts in the surface plasmon resonance (SPR) frequency for noble metal (Au, Ag) nanoclusters are discussed in this book chapter. Spill out of electron from the Fermi surface is considered as the origin of red shift. On the other hand, both screening of electrons of the noble metal in porous media and quantum effect of screen surface electron are considered for the observed blue shift in the SPR peak position.Comment: 37 pages, 14 Figures in the submitted book chapter of The Annual Reviews in Plasmonics, edited by Professor Chris D. Geddes. Springer Scinec

    Multiplexing of optical fiber gas sensors with a frequency-modulated continuous-wave technique

    Get PDF
    Author name used in this publication: W. JinAuthor name used in this publication: H. L. HoAuthor name used in this publicaiton: M. S. Demokan2000-2001 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    A Study of Brain Networks Associated with Swallowing Using Graph-Theoretical Approaches

    Get PDF
    Functional connectivity between brain regions during swallowing tasks is still not well understood. Understanding these complex interactions is of great interest from both a scientific and a clinical perspective. In this study, functional magnetic resonance imaging (fMRI) was utilized to study brain functional networks during voluntary saliva swallowing in twenty-two adult healthy subjects (all females, 23.1±1.52 years of age). To construct these functional connections, we computed mean partial correlation matrices over ninety brain regions for each participant. Two regions were determined to be functionally connected if their correlation was above a certain threshold. These correlation matrices were then analyzed using graph-theoretical approaches. In particular, we considered several network measures for the whole brain and for swallowing-related brain regions. The results have shown that significant pairwise functional connections were, mostly, either local and intra-hemispheric or symmetrically inter-hemispheric. Furthermore, we showed that all human brain functional network, although varying in some degree, had typical small-world properties as compared to regular networks and random networks. These properties allow information transfer within the network at a relatively high efficiency. Swallowing-related brain regions also had higher values for some of the network measures in comparison to when these measures were calculated for the whole brain. The current results warrant further investigation of graph-theoretical approaches as a potential tool for understanding the neural basis of dysphagia. © 2013 Luan et al

    Novel silicon nanotubes

    Get PDF
    Novel silicon nanotubes with inner-diameter of 60-80 nm was prepared using; hydrogen-added dechlorination of SiCl4 followed by chemical vapor deposition (CVD) on a NixMgyO catalyst. The TEM observation showed that the suitable reaction temperature is 973 K for the formation of silicon nanotubes. Most of silicon nanotubes have one open end and some have two closed ends. The shape of nanoscale silicon, however, isa micro-crystal type at 873 K, a rod or needle type at 993 K and an onion-type at 1023 K, respectively

    Neutrino-electron scattering in noncommutative space

    Full text link
    Neutral particles can couple with the U(1)U(1) gauge field in the adjoint representation at the tree level if the space-time coordinates are noncommutative (NC). Considering neutrino-photon coupling in the NC QED framework, we obtain the differential cross section of neutrino-electron scattering. Similar to the magnetic moment effect, one of the NC terms is proportional to 1T\frac 1 T, where TT is the electron recoil energy. Therefore, this scattering provides a chance to achieve a stringent bound on the NC scale in low energy by improving the sensitivity to the smaller electron recoil energy.Comment: 12 pages, 2 figure

    Mechanism and isotope effect of ammonia synthesis over Fe and Ru catalysts

    Get PDF
    Chemistry for Catalyst Synthesis Division of Catalysis Science and Technology (probationary) The 237th ACS National Meeting, Salt Lake City, UT, March 22-26, 200

    Characterization and Comparison of the Tissue-Related Modules in Human and Mouse

    Get PDF
    BACKGROUND: Due to the advances of high throughput technology and data-collection approaches, we are now in an unprecedented position to understand the evolution of organisms. Great efforts have characterized many individual genes responsible for the interspecies divergence, yet little is known about the genome-wide divergence at a higher level. Modules, serving as the building blocks and operational units of biological systems, provide more information than individual genes. Hence, the comparative analysis between species at the module level would shed more light on the mechanisms underlying the evolution of organisms than the traditional comparative genomics approaches. RESULTS: We systematically identified the tissue-related modules using the iterative signature algorithm (ISA), and we detected 52 and 65 modules in the human and mouse genomes, respectively. The gene expression patterns indicate that all of these predicted modules have a high possibility of serving as real biological modules. In addition, we defined a novel quantity, "total constraint intensity," a proxy of multiple constraints (of co-regulated genes and tissues where the co-regulation occurs) on the evolution of genes in module context. We demonstrate that the evolutionary rate of a gene is negatively correlated with its total constraint intensity. Furthermore, there are modules coding the same essential biological processes, while their gene contents have diverged extensively between human and mouse. CONCLUSIONS: Our results suggest that unlike the composition of module, which exhibits a great difference between human and mouse, the functional organization of the corresponding modules may evolve in a more conservative manner. Most importantly, our findings imply that similar biological processes can be carried out by different sets of genes from human and mouse, therefore, the functional data of individual genes from mouse may not apply to human in certain occasions
    corecore