Contents | Author Index

Search | Help | Meeting & Headquarters Info | Copyright & Credits

237th National Meeting & Exposition Salt Lake City, Utah March 22-26, 2009

CATL 21 Mechanism and isotope effect of ammonia synthesis over Fe and Ru catalysts

JD Lin, jdlinhp@hotmail.com¹, **DW** Liao, dwliao@xmu.edu.cn², HB Zhang³, HL Wan⁴, and KR. Tsai⁴. (1) Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China, (2) Department of Chemistry, College of Chemistry and Chemical Engineering, Institute of Physical Chemistry, Xiamen University, Xiamen, 361005, China, (3) Department of Chemistry, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Xiamen University, Xiamen, 361005, China, (4) Department of Chemistry, State Key Laboratory of Physical Chemistry for the Solid Surfaces, Xiamen University, Xiamen, 361005, China

Ammonia synthesis mechanism (dissociative or associative route?) is a never ending problem. The deuterium isotope effects in ammonia synthesis over both iron-based catalysts, the unpromoted Fe catalyst and double-promoted Fe catalyst (A110-3), and ruthenium-based catalysts, the Ru/γ -Al₂O₃, Ru/MgO, K-Ru/MgO and Ba-Ru/MgO, were

evaluated with N₂/3H₂ and N₂/3D₂ under reaction conditions of 0.2 MPa, GHSV = 12000 h⁻¹ or 24000 h⁻¹ and 633 K \sim 773 K. A strong deuterium inverse isotope effect, about 2 of r_D/r_H, was observed for above catalysts in which the r_D/r_H is 1.75 \sim 2.07 for unpromoted Fe, 1.93 \sim 2.44 for double-promoted Fe, 1.12 \sim 2.03 for Ru/γ-Al₂O₃, 1.38 \sim 1.75 for Ru/MgO, 1.76 \sim 2.40 for K- Ru/MgO and 1.76 \sim 2.55 for Ba-Ru/MgO catalyst, respectively. It indicated that hydrogen should take part in a rate-determining step. The thermodynamic or dynamic isotope effect and the ammonia synthesis mechanism over iron and ruthenium catalysts were discussed.

Chemistry for Catalyst Synthesis

Division of Catalysis Science and Technology (probationary)

The 237th ACS National Meeting, Salt Lake City, UT, March 22-26, 2009