22 research outputs found

    Particulate Alum via Pickering Emulsion for an Enhanced COVID-19 Vaccine Adjuvant

    No full text
    For rapid response against the prevailing COVID-19 (coronavirus disease 19), it is a global imperative to exploit the immunogenicity of existing formulations for safe and efficient vaccines. As the most accessible adjuvant, aluminum hydroxide (alum) is still the sole employed adjuvant in most countries. However, alum tends to attach on the membrane rather than entering the dendritic cells (DCs), leading to the absence of intracellular transfer and process of the antigens, and thus limits T-cell-mediated immunity. To address this, alum is packed on the squalene/water interphase is packed, forming an alum-stabilized Pickering emulsion (PAPE). "Inheriting" from alum and squalene, PAPE demonstrates a good biosafety profile. Intriguingly, with the dense array of alum on the oil/water interphase, PAPE not only adsorbs large quantities of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) antigens, but also harbors a higher affinity for DC uptake, which provokes the uptake and cross-presentation of the delivered antigens. Compared with alum-treated groups, more than six times higher antigen-specific antibody titer and three-fold more IFN-gamma-secreting T cells are induced, indicating the potent humoral and cellular immune activations. Collectively, the data suggest that PAPE may provide potential insights toward a safe and efficient adjuvant platform for the enhanced COVID-19 vaccinations

    Mosaic RBD nanoparticle elicits immunodominant antibody responses across sarbecoviruses

    No full text
    Summary: Nanoparticle vaccines displaying mosaic receptor-binding domains (RBDs) or spike (S) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or other sarbecoviruses are used in preparedness against potential zoonotic outbreaks. Here, we describe a self-assembling nanoparticle using lumazine synthase (LuS) as the scaffold to display RBDs from different sarbecoviruses. Mosaic nanoparticles induce sarbecovirus cross-neutralizing antibodies comparable to a nanoparticle cocktail. We find mosaic nanoparticles elicit a B cell receptor repertoire using an immunodominant germline gene pair of IGHV14-3:IGKV14-111. Most of the tested IGHV14-3:IGKV14-111 monoclonal antibodies (mAbs) are broadly cross-reactive to clade 1a, 1b, and 3 sarbecoviruses. Using mAb competition and cryo-electron microscopy, we determine that a representative IGHV14-3:IGKV14-111 mAb, M2-7, binds to a conserved epitope on the RBD, largely overlapping with the pan-sarbecovirus mAb S2H97. This suggests mosaic nanoparticles expand B cell recognition of the common epitopes shared by different clades of sarbecoviruses. These results provide immunological insights into the cross-reactive responses elicited by mosaic nanoparticles against sarbecoviruses

    A booster of Delta-Omicron RBD-dimer protein subunit vaccine augments sera neutralization of Omicron sub-variants BA.1/BA.2/BA.2.12.1/BA.4/BA.5

    No full text
    ABSTRACTThe SARS-CoV-2 Omicron variants of concern (VOCs) showed severe resistance to the early-approved COVID-19 vaccines-induced immune responses. The breakthrough infections by the Omicron VOCs are currently the major challenge for pandemic control. Therefore, booster vaccination is crucial to enhance immune responses and protective efficacy. Previously, we developed a protein subunit COVID-19 vaccine ZF2001, based on the immunogen of receptor-binding domain (RBD) homodimer, which was approved in China and other countries. To adapt SARS-CoV-2 variants, we further developed chimeric Delta-Omicron BA.1 RBD-dimer immunogen which induced broad immune responses against SARS-CoV-2 variants. In this study, we tested the boosting effect of this chimeric RBD-dimer vaccine in mice after priming with two doses of inactivated vaccines, compared with a booster of inactivated vaccine or ZF2001. The results demonstrated that boosting with bivalent Delta-Omicron BA.1 vaccine greatly promoted the neutralizing activity of the sera to all tested SARS-CoV-2 variants. Therefore, the Delta-Omicron chimeric RBD-dimer vaccine is a feasible booster for those with prior vaccination of COVID-19 inactivated vaccines

    Modified Vaccinia Virus Ankara Triggers Type I IFN Production in Murine Conventional Dendritic Cells via a cGAS/STING-Mediated Cytosolic DNA-Sensing Pathway

    No full text
    <div><p>Modified vaccinia virus Ankara (MVA) is an attenuated poxvirus that has been engineered as a vaccine against infectious agents and cancers. Our goal is to understand how MVA modulates innate immunity in dendritic cells (DCs), which can provide insights to vaccine design. In this study, using murine bone marrow-derived dendritic cells, we assessed type I interferon (IFN) gene induction and protein secretion in response to MVA infection. We report that MVA infection elicits the production of type I IFN in murine conventional dendritic cells (cDCs), but not in plasmacytoid dendritic cells (pDCs). Transcription factors IRF3 (IFN regulatory factor 3) and IRF7, and the positive feedback loop mediated by IFNAR1 (IFN alpha/beta receptor 1), are required for the induction. MVA induction of type I IFN is fully dependent on STING (stimulator of IFN genes) and the newly discovered cytosolic DNA sensor cGAS (cyclic guanosine monophosphate-adenosine monophosphate synthase). MVA infection of cDCs triggers phosphorylation of TBK1 (Tank-binding kinase 1) and IRF3, which is abolished in the absence of cGAS and STING. Furthermore, intravenous delivery of MVA induces type I IFN in wild-type mice, but not in mice lacking STING or IRF3. Treatment of cDCs with inhibitors of endosomal and lysosomal acidification or the lysosomal enzyme Cathepsin B attenuated MVA-induced type I IFN production, indicating that lysosomal enzymatic processing of virions is important for MVA sensing. Taken together, our results demonstrate a critical role of the cGAS/STING-mediated cytosolic DNA-sensing pathway for type I IFN induction in cDCs by MVA. We present evidence that vaccinia virulence factors E3 and N1 inhibit the activation of IRF3 and the induction of IFNB gene in MVA-infected cDCs.</p></div

    Dosing interval regimen shapes potency and breadth of antibody repertoire after vaccination of SARS-CoV-2 RBD protein subunit vaccine

    No full text
    Vaccination with different vaccines has been implemented globally to counter the continuous COVID-19 pandemic. However, the vaccine-elicited antibodies have reduced efficiency against the highly mutated Omicron sub-variants. Previously, we developed a protein subunit COVID-19 vaccine called ZF2001, based on the dimeric receptor-binding domain (RBD). This vaccine has been administered using different dosing intervals in real-world setting. Some individuals received three doses of ZF2001, with a one-month interval between each dose, due to urgent clinical requirements. Others had an extended dosing interval of up to five months between the second and third dose, a standard vaccination regimen for the protein subunit vaccine against hepatitis B. In this study, we profile B cell responses in individuals who received three doses of ZF2001, and compared those with long or short dosing intervals. We observed that the long-interval group exhibited higher and broader serologic antibody responses. These responses were associated with the increased size and evolution of vaccine-elicited B-cell receptor repertoires, characterized by the elevation of expanded clonotypes and somatic hypermutations. Both groups of individuals generated substantial amounts of broadly neutralizing antibodies (bnAbs) against various SARS-CoV-2 variants, including Omicron sub-variants such as XBB. These bnAbs target four antigenic sites within the RBD. To determine the vulnerable site of SARS-CoV-2, we employed cryo-electron microscopy to identify the epitopes of highly potent bnAbs that targeted two major sites. Our findings provide immunological insights into the B cell responses elicited by RBDbased vaccine, and suggest that a vaccination regimen of prolonging time interval should be used in practice

    Developmental and reproductive toxicity of a recombinant protein subunit COVID-19 vaccine (ZF2001) in rats

    No full text
    Abstract ZF2001, a protein subunit vaccine against coronavirus disease 2019 (COVID-19), contains recombinant tandem repeat of dimeric receptor-binding domain (RBD) protein of the SARS-CoV-2 spike protein with an aluminium-based adjuvant. During the development of this vaccine, two nonclinical studies were conducted to evaluate female fertility, embryo-fetal development, and postnatal developmental toxicity in Sprague‒Dawley rats according to the ICH S5 (R3) guideline. In Study 1 (embryo-fetal developmental toxicity, EFD), 144 virgin female rats were randomly assigned into four groups and received three doses of vaccine (25 μg or 50 μg RBD protein/dose, containing the aluminium-based adjuvant), the aluminium-based adjuvant or a sodium chloride injection administered intramuscularly on days 21 and 7 prior to mating and on gestation day (GD) 6. In Study 2 (pre- and postnatal developmental toxicity, PPND), ZF2001 at a dose of 25 μg RBD protein/dose or sodium chloride injection was administered intramuscularly to female rats (n = 28 per group) 7 days prior to mating and on GD 6, GD 20 and postnatal day (PND) 10. There were no obvious adverse effects in dams, except for local injection site reactions related to the aluminium-based adjuvant (yellow nodular deposits in the interstitial muscle fibres). There were also no effects of ZF2001 on the mating performance, fertility or reproductive performance of parental females, embryo-fetal development, postnatal survival, growth, physical development, reflex ontogeny, behavioural and neurofunctional development, or reproductive performance of the offspring. The strong immune responses associated with binding and neutralising antibodies were both confirmed in dams and fetuses or offspring in these two studies. These results would support clinical trials or the use of ZF2001 in maternal immunisation campaigns, including those involving women with childbearing potential, regardless of pregnancy status

    cGAS is the critical cytosolic DNA sensor for MVA infection of cDCs.

    No full text
    <p>GM-CSF-BMDCs were generated from cGAS<sup>−/−</sup> mice and its age-matched WT controls. (A) Cells (1×10<sup>6</sup>) were infected with MVA at a MOI of 10. Supernatants were collected 22 h later. The concentrations of IFN-α and IFN-β were determined by ELISA. Data are means ± SEM (n = 3). A representative experiment is shown, repeated twice (***, <i>p</i><0.001). (B) Cells (1×10<sup>6</sup>) were infected with MVA at a MOI of 10. Cells were collected at 6 h post infection. Real-time PCR analysis of IFNA4 and IFNB mRNAs were performed. Data are means ± SEM (n = 3). A representative experiment is shown, repeated twice (***, <i>p</i><0.001). (C) Western blot analysis of cGAS<sup>+/+</sup> and cGAS<sup>−/−</sup> cDCs infected with MVA at a MOI of 10, or mock infected. Whole-cell lysates were prepared. Equal amount of proteins were subjected to SDS-PAGE and immunoblotting with anti-phospho-TBK1, anti-TBK1, anti-phosphoserine-396 of IRF3, and anti-IRF3. GAPDH was used as a loading control. “hpi”, hours post infection. “M”, mock infection control.</p

    TLR9 and MyD88 contribute to the induction of type I IFN in cDCs by MVA.

    No full text
    <p>GM-CSF-BMDCs were generated from MyD88<sup>−/−</sup> (A), TLR9<sup>−/−</sup> (B), TLR7<sup>−/−</sup> (C) mice, and their age-matched WT controls. Cells (1×10<sup>6</sup>) were either stimulated with CpG or infected with MVA at a MOI of 10. Supernatants were collected 22 h later. The concentrations of IFN-α and IFN-β were determined by ELISA. Data are means ± SEM (n = 6). The combined results of three independently performed experiments are shown. *, <i>p</i><0.05; **, <i>p</i><0.01; ***, <i>p</i><0.001; comparisons were made between WT cells and various knockout cells as indicated.</p
    corecore