117 research outputs found
Knock-in of Human BACE1 Cleaves Murine APP and Reiterates Alzheimer-like PhenoTypes
Footnotes We thank Roemex and the College for Life Science and Medicine at the University of Aberdeen for their generous support. The authors declare no competing financial interests.Peer reviewedPublisher PD
Mutant Tau knock-in mice display frontotemporal dementia relevant behaviour and histopathology
Peer reviewedPostprin
Between and within laboratory reliability of mouse behaviour recorded in home-cage and open-field
Peer reviewedPostprin
Long-term home cage activity scans reveal lowered exploratory behaviour in symptomatic female Rett mice
<p>Numerous experimental models have been developed to reiterate endophenotypes of Rett syndrome, a neurodevelopmental disorder with a multitude of motor, cognitive and vegetative symptoms. Here, female Mecp2Stop mice [1] were characterised at mild symptomatic conditions in tests for anxiety (open field, elevated plus maze) and home cage observation systems for food intake, locomotor activity and circadian rhythms.</p>
<p>Aged 8–9 months, Mecp2Stop mice presented with heightened body weight, lower overall activity in the open field, but no anxiety phenotype. Although home cage activity scans conducted in two different observation systems, PhenoMaster and PhenoTyper, confirmed normal circadian activity, they revealed severely compromised habituation to a novel environment in all parameters registered including those derived from a non-linear decay model such as initial exploration maximum, decay half-life of activity and span, as well as plateau. Furthermore, overall activity was significantly reduced in nocturnal periods due to reductions in both fast ambulatory movements, but also a slow lingering. In contrast, light-period activity profiles during which the amount of sleep was highest remained normal in Mecp2Stop mice.</p>
<p>These data confirm the slow and progressive development of Rett-like symptoms in female Mecp2Stop mice resulting in a prominent reduction of overall locomotor activity, while circadian rhythms are maintained. Alterations in the time-course of habituation may indicate deficiencies in cognitive processing.</p>
Apathy-like behaviour in tau mouse models of Alzheimer’s disease and frontotemporal dementia
Open Access via the Elsevier agreement This study was sponsored by WisTa Laboratories Ltd., Singapore. (grant PAR1577).Peer reviewedPublisher PD
Knock-in of human BACE1 cleaves murine APP and reiterates alzheimer-like phenotypes
Key neuropathological hallmarks of Alzheimer's disease (AD) are elevated levels of amyloid β-peptide (Aβ) species generated via amyloid precursor protein (APP) endoproteolysis and cleavage by the rate-limiting β-site enzyme 1 (BACE1). Because rodents do not develop amyloid pathologies, we here investigated whether AD-like endophenotypes can be created in mice by expression of human bace1. To avoid pitfalls of existing models, we introduced hbace1 via knock-in under the control of the CaMKII α promoter into the safe HPRT locus. We report amyloidogenic processing of murine APP in the hBACE1 mice (termed PLB4), resulting in the formation of toxic APP metabolites that accumulate intra- and extraneuronally in hippocampus and cortex. Pronounced accumulation of Aβ*56 and Aβ hexamers in the absence of plaque deposition was detected in brain tissue from symptomatic PLB4 mice. Heightened levels of inflammation (gliosis) also appeared in several AD-related brain regions (dentate gyrus, hippocampal area CA1, piriform and parietal cortices) at 6 and 12 months of age. Behaviorally, deficits in habituation to a novel environment and semantic-like memory (social transmission of food preference) were detected from 3 to 4 months of age. Impairments in spatial learning strategies in long-term reference (water maze) and working memory (Y-maze) tasks presented at 6 months, and were distinct from reductions in locomotor activity and anxiety. Overall, our data indicate for the first time that targeted, subtle forebrain-specific expression through single gene knock-in of hBACE1 is sufficient to generate AD-relevant cognitive impairments amid corresponding histopathologies, confirming human BACE as the key parameter in amyloid pathogenesis.</p
Mutant Tau knock-in mice display frontotemporal dementia relevant behaviour and histopathology
Models of Tau pathology related to frontotemporal dementia (FTD) are essential to determine underlying neurodegenerative pathologies and resulting tauopathy relevant behavioural changes. However, existing models are often limited in their translational value due to Tau overexpression, and the frequent occurrence of motor deficits which prevent comprehensive behavioural assessments. In order to address these limitations, a forebrain-specific (CaMKIIα promoter), human mutated Tau (hTauP301L + R406W) knock-in mouse was generated out of the previously characterised PLB1Triple mouse, and named PLB2Tau. After confirmation of an additional hTau species (~60 kDa) in forebrain samples, we identified age-dependent progressive Tau phosphorylation which coincided with the emergence of FTD relevant behavioural traits. In line with the non-cognitive symptomatology of FTD, PLB2Tau mice demonstrated early emerging (~6 months) phenotypes of heightened anxiety in the elevated plus maze, depressive/apathetic behaviour in a sucrose preference test and generally reduced exploratory activity in the absence of motor impairments. Investigations of cognitive performance indicated prominent dysfunctions in semantic memory, as assessed by social transmission of food preference, and in behavioural flexibility during spatial reversal learning in a home cage corner-learning task. Spatial learning was only mildly affected and task-specific, with impairments at 12 months of age in the corner learning but not in the water maze task. Electroencephalographic (EEG) investigations indicated a vigilance-stage specific loss of alpha power during wakefulness at both parietal and prefrontal recording sites, and site-specific EEG changes during non-rapid eye movement sleep (prefrontal) and rapid eye movement sleep (parietal). Further investigation of hippocampal electrophysiology conducted in slice preparations indicated a modest reduction in efficacy of synaptic transmission in the absence of altered synaptic plasticity. Together, our data demonstrate that the transgenic PLB2Tau mouse model presents with a striking behavioural and physiological face validity relevant for FTD, driven by the low level expression of mutant FTD hTau.</p
Synthesis of biolabile thioalkyl-protected phosphates from an easily accessible phosphotriester precursor
Robust methods for the synthesis of mixed phosphotriesters are essential to accelerate the development of novel phosphate-containing bioactive molecules. To enable efficient cellular uptake, phosphate groups are commonly masked with biolabile protecting groups, such as S-acyl-2-thioethyl (SATE) esters, that are removed once the molecule is inside the cell. Typically, bis-SATE-protected phosphates are synthesised through phosphoramidite chemistry. This approach, however, suffers from issues with hazardous reagents and can give unreliable yields, especially when applied to the synthesis of sugar-1-phosphate derivatives as tools for metabolic oligosaccharide engineering. Here, we report the development of an alternative approach that gives access to bis-SATE phosphotriesters in two steps from an easy to synthesise tri(2-bromoethyl)phosphotriester precursor. We demonstrate the viability of this strategy using glucose as a model substrate, onto which a bis-SATE-protected phosphate is introduced either at the anomeric position or at C6. We show compability with various protecting groups and further explore the scope and limitations of the methodology on different substrates, including N-acetylhexosamine and amino acid derivatives. The new approach facilitates the synthesis of bis-SATE-protected phosphoprobes and prodrugs and provides a platform that can boost further studies aimed at exploring the unique potential of sugar phosphates as research tools
Effectiveness and cost-effectiveness of transmural collaborative care with consultation letter (TCCCL) and duloxetine for major depressive disorder (MDD) and (sub)chronic pain in collaboration with primary care: design of a randomized placebo-controlled multi-Centre trial: TCC:PAINDIP
__Abstract__
Background: The comorbidity of pain and depression is associated with high disease burden for patients in terms
of disability, wellbeing, and use of medical care. Patients with major and minor depression often present
themselves with pain to a general practitioner and recognition of depression in such cases is low, but evolving.
Also, physical symptoms, including pain, in major depressive disorder, predict a poorer response to treatment. A
multi-faceted, patient-tailored treatment programme, like collaborative care, is promising. However, treatment of
chronic pain conditions in depressive patients has, so far, received limited attention in research. Cost effectiveness
of an integrated approach of pain in depressed patients has not been studied.
This article describes the aims and design of a study to evaluate effects and costs of collaborative care with the
antidepressant duloxetine for patients with pain symptoms and a depressive disorder, compared to collaborative
care with placebo and compared to duloxetine alone
ADHD symptoms and diagnosis in adult preterms: systematic review, IPD meta-analysis, and register-linkage study
BACKGROUND:
This study examined differences in ADHD symptoms and diagnosis between preterm and term-born adults (≥18 years), and tested if ADHD is related to gestational age, birth weight, multiple births, or neonatal complications in preterm borns.
METHODS:
(1) A systematic review compared ADHD symptom self-reports and diagnosis between preterm and term-born adults published in PubMed, Web of Science, and PROQUEST until April 2021; (2) a one-stage Individual Participant Data(IPD) meta-analysis (n = 1385 preterm, n = 1633 term; born 1978–1995) examined differences in self-reported ADHD symptoms[age 18–36 years]; and (3) a population-based register-linkage study of all live births in Finland (01/01/1987–31/12/1998; n = 37538 preterm, n = 691,616 term) examined ADHD diagnosis risk in adulthood (≥18 years) until 31/12/2016.
RESULTS:
Systematic review results were conflicting. In the IPD meta-analysis, ADHD symptoms levels were similar across groups (mean z-score difference 0.00;95% confidence interval [95% CI] −0.07, 0.07). Whereas in the register-linkage study, adults born preterm had a higher relative risk (RR) for ADHD diagnosis compared to term controls (RR = 1.26, 95% CI 1.12, 1.41, p < 0.001). Among preterms, as gestation length (RR = 0.93, 95% CI 0.89, 0.97, p < 0.001) and SD birth weight z-score (RR = 0.88, 95% CI 0.80, 0.97, p < 0.001) increased, ADHD risk decreased.
CONCLUSIONS:
While preterm adults may not report higher levels of ADHD symptoms, their risk of ADHD diagnosis in adulthood is higher
- …
