60 research outputs found

    Synthesis and Characterization of CZTS Thin Films by Sol-Gel Method without Sulfurization

    Get PDF
    One process of layer-by-layer sol-gel deposition without sulfurization was developed. The CZTS films with 1.2 μm and the sulfur ratio of ~48% were prepared and their characteristics were measured. The as-deposited and annealed films are of Kesterite structure. The as-deposited films do not present obvious electric conduction type. However, the annealed 9-LAY-ANN film is p-type conduction and has sheet resistance of 4.08 kΩ/□ and resistivity of 4.896 × 10−1 Ω·cm. The optic energy gap is 1.50 eV for as-deposited films and is 1.46 eV after being annealed. The region deposited by using Lo-Con solution is more compact than that by the Hi-Con solution from SEM morphology images

    Patriotic Fun: Toys and Mobilization in China from the Republican to the Communist Era

    Get PDF
    This chapter explores the use of leisure to mobilize children in China from the 1910s to the early 1950s, in times of both war and peace. Drawing on normative advice, and commenting on youngsters’ reactions, it describes how ostensibly different regimes similarly deployed toys and play in order to foster children’s engagement in struggles of a political, commercial or military nature. It outlines how a variety of items - from so-called “educational” war toys to figurines and lanterns - could serve to rally children for the nation and familiarize war. The chapter argues that, although mobilization was construed as defensive, patriotic activism and acquaintance with the metaphorical or real battlefield were significant components of Chinese children’s upbringing from the beginning of the twentieth century

    Soil Fertility Management for Sustainable Crop Production

    No full text
    To feed the growing world population, which is expected to reach 9 [...

    The Short-Term Effects of Rice Straw Biochar, Nitrogen and Phosphorus Fertilizer on Rice Yield and Soil Properties in a Cold Waterlogged Paddy Field

    No full text
    Crop productivity in cold waterlogged paddy fields can be constrained by chronic flooding stress and low temperature. Farmers typically use chemical fertilizer to improve crop production, but this conventional fertilization is not very effective in a cold waterlogged paddy field. Biochar amendment has been proposed as a promising management approach to eliminating these obstacles. However, little is known about the performance of biochar when combined with N fertilizer and P fertilizer in cold waterlogged soils. The aim of this study was, therefore, to assess the main effects and interactive effects of rice straw biochar, N and P fertilizer on rice growth and soil properties in a cold waterlogged paddy field. The field treatments consisted of a factorial combination of two biochar levels (0 and 2.25 t ha−1), two N fertilizer levels (120.0 and 180.0 kg ha−1) and two P fertilizer levels (37.5 and 67.5 kg ha−1) which were arranged in a randomized block design, with three replicates. Results confirmed that biochar application caused a significant increase in the soil pH due to its liming effect, while this application resulted in a significant decrease in soil exchangeable cations, such as exchangeable Ca, Mg, Al and base cations. The interactive effect of N fertilizer, P fertilizer and biochar was significant for soil total N. Moreover, a negative effect of biochar on the internal K use efficiency suggested that K uptake into rice may benefit from biochar application. According to the partial Eta squared values, the combined application of N fertilizer and biochar was as effective as pure P fertilization at increasing straw P uptake. The addition of biochar to farmers’ fertilization practice treatment (180.0 kg N ha−1, 67.5 kg P2O5 ha−1 and 67.5 kg K2O ha−1) significantly increased rice yield, mainly owing to improvements in grains per panicle. However, notable effects of biochar on rice yield and biomass production were not detected. More studies are required to assess the long-term behavior of biochar in a cold waterlogged paddy field. This study may lay a theoretical foundation for blended application of biochar with fertilizer in a cold waterlogged paddy field

    材料挤出三维打印单材料载体配方肥的制备与控释效果

    No full text
    As a processing technology that can rapidly fabricate customized products in small batches, three-dimensional (3D) printing has great application potential in horticultural gardens. On the basis of existing studies on controlled releasing materials for 3D printing, the carrier materials for solo nutrition were developed after a range of formulation screening. The new formulations were suitable for material extrusion 3D printing and the single-material carrier formulation fertilizer contained sodium alginate or xanthan gum as a binder, mannitol as a filler, ethanol/water with fixed ratio as a solvent, sepiolite as a thickening agent, and urea as the core fertilizer. It was confirmed that the maximum adding ratio of urea could reach 1∶4 [m (urea)∶V (solvent)] when using sodium alginate as a binder, while the maximum adding ratio could reach 3∶4 [m (urea)∶V (solvent)] when using xanthan gum as a binder. It was confirmed that the developed formulation could also be used as the carrier of other types of nutrients including KCl, K2HPO4, and ZnSO4. This work also demonstrated that it was possible to combine different nutrients and achieve element couplings by using multi-material extrusion 3D printing technology. Through the printing parameter adjustment experiment, the optimal printing was achieved when the printing speed was 200 mm/min, and the extrusion speed was 0.02 mm/s, and the extrusion height was 1 mm, and the nozzle diameter was 1 mm. The controlled release period of different formulations were further studied by the sand column leaching method. There were significant differences between the controlled release period of single-material carrier formulation fertilizers under different formulations and their post-treatments. The modified formulation with sepiolite can obviously change the release rate of single-material carrier formula fertilizer and the longest controlled release period reached 30 d
    corecore