3,674 research outputs found

    Adhesive L1CAM-Robo Signaling Aligns Growth Cone F-Actin Dynamics to Promote Axon-Dendrite Fasciculation in C. elegans

    Get PDF
    Neurite fasciculation through contact-dependent signaling is important for the wiring and function of the neuronal circuits. Here, we describe a type of axon-dendrite fasciculation in C. elegans, where proximal dendrites of the nociceptor PVD adhere to the axon of the ALA interneuron. This axon-dendrite fasciculation is mediated by a previously uncharacterized adhesive signaling by the ALA membrane signal SAX-7/L1CAM and the PVD receptor SAX-3/Robo but independent of Slit. L1CAM physically interacts with Robo and instructs dendrite adhesion in a Robo-dependent manner. Fasciculation mediated by L1CAM-Robo signaling aligns F-actin dynamics in the dendrite growth cone and facilitates dynamic growth cone behaviors for efficient dendrite guidance. Disruption of PVD dendrite fasciculation impairs nociceptive mechanosensation and rhythmicity in body curvature, suggesting that dendrite fasciculation governs the functions of mechanosensory circuits. Our work elucidates the molecular mechanisms by which adhesive axon-dendrite signaling shapes the construction and function of sensory neuronal circuits

    A characterization of graphs with rank 5

    Get PDF
    AbstractThe rank of a graph G is defined to be the rank of its adjacency matrix. In this paper, we consider the following problem: what is the structure of a connected graph G with rank 5? or equivalently, what is the structure of a connected n-vertex graph G whose adjacency matrix has nullity n-5? In this paper, we completely characterize connected graphs G whose adjacency matrix has rank 5

    Internal low-frequency noise analysis of high-speed train under mechanical excitation

    Get PDF
    With the speeding up of high-speed trains, the radiation noise generated from plates of the vehicle body was becoming increasingly obvious; however, fewer researches were performed on this aspect at present. The dynamic equation of the head vehicle of the high-speed train and the vehicle-track coupled dynamic model were both established, and then the dynamic load excitation of the vehicle body on uneven tracks was eventually obtained. With the material properties attributed, the finite element model of the vehicle body was eventually obtained to solve the modal, which was subsequently compared with the experimental one to verify the accuracy of the model. Based on the structural-acoustic coupling boundary element method, the noise distribution inside the passenger compartment of the high-speed train was calculated. Moreover, with the employment of the acoustic transfer vector (ATV) technology, the contribution coefficients of each plate of the vehicle body to the maximum sound pressure point were calculated. It was shown through the result that when the sound-absorbing materials inside the vehicle were ignored at the speed of 300 km/h, the sound pressure level inside the high-speed train ranged between 80 dB and 93 dB. Furthermore, when transverse ribs were added to the passenger compartment floor, its contribution coefficient to the sound pressure at the field points could be reduced, thus the noise inside the high-speed train could be improved

    Phase separation in the trapped spinor gases with anisotropic spin-spin interaction

    Full text link
    We investigate the effect of the anisotropic spin-spin interaction on the ground state density distribution of the one dimensional spin-1 bosonic gases within a modified Gross-Pitaevskii theory both in the weakly interaction regime and in the Tonks-Girardeau (TG) regime. We find that for ferromagnetic spinor gas the phase separation occurs even for weak anisotropy of the spin-spin interaction, which becomes more and more obvious and the component of mF=0m_F=0 diminishes as the anisotropy increases. However, no phase separation is found for anti-ferromagnetic spinor gas in both regimes.Comment: 5pages, 4 figure

    Quantum correlation generation capability of experimental processes

    Full text link
    Einstein-Podolsky-Rosen (EPR) steering and Bell nonlocality illustrate two different kinds of correlations predicted by quantum mechanics. They not only motivate the exploration of the foundation of quantum mechanics, but also serve as important resources for quantum-information processing in the presence of untrusted measurement apparatuses. Herein, we introduce a method for characterizing the creation of EPR steering and Bell nonlocality for dynamical processes in experiments. We show that the capability of an experimental process to create quantum correlations can be quantified and identified simply by preparing separable states as test inputs of the process and then performing local measurements on single qubits of the corresponding outputs. This finding enables the construction of objective benchmarks for the two-qubit controlled operations used to perform universal quantum computation. We demonstrate this utility by examining the experimental capability of creating quantum correlations with the controlled-phase operations on the IBM Quantum Experience and Amazon Braket Rigetti superconducting quantum computers. The results show that our method provides a useful diagnostic tool for evaluating the primitive operations of nonclassical correlation creation in noisy intermediate scale quantum devices.Comment: 5 figures, 3 appendice
    corecore