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The rank of a graph G is defined to be the rank of its adjacency

matrix. In this paper,we consider the following problem:what is the

structure of a connected graph G with rank 5? or equivalently, what

is the structure of a connected n-vertex graph G whose adjacency

matrix has nullity n − 5? In this paper, we completely characterize

connected graphs G whose adjacency matrix has rank 5.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a graph with vertex set V(G) and edge set E(G). Throughout this paper, we only consider

finite graphs with no loops or multiple edges, and use the notation and terminology of [4], unless

otherwise stated. The adjacency matrix A(G) of G having vertex set V(G) = {v1, v2, . . . , vn} is the
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n × n symmetric matrix [aij] such that aij = 1 if vi is adjacent to vj , and aij = 0 otherwise. The

nullity of G, denoted by η(G), is the multiplicity of the eigenvalue zero in the spectrum of A(G). The
rank of G, written as r(G), is the number of nonzero eigenvalues in the spectrum of A(G). Clearly,
r(G) + η(G) = |V(G)|. A graph G is said to have nullity t (resp. rank k) if η(G) = t (resp. r(G) = k).

The n-path is the graph Pn with V(Pn) = {v1, v2, . . . , vn} and E(Pn) = {v1v2, v2v3, . . . , vn−1vn}. The
n-cycle is the graph Cn with V(Cn) = {v1, v2, . . . , vn} and E(Cn) = {v1v2, v2v3, . . . , vn−1vn, vnv1}.
The complete graph on n vertices has n vertices and n(n − 1)/2 edges, and is denoted by Kn.

Chemistry deals with molecules and atoms. A typical atom consists of a small nucleus and a large

electron cloud. As presented in most textbooks of quantum mechanics [1,2], if one wants to get an

accurate determination of the structure andproperties ofmolecules, correlations between themotions

of the many electrons of the system must be included. At this point, Newton’s classical mechanics no

longer hold. That is,we enter thefield of quantummechanics. In quantummechanics, all the dynamical

information about a system (e.g. atomormolecule) are expressed in termsof awavefunction by solving

theSchrödinger equation. Thewavefunctions formolecules are calledmolecular orbitals. However, even

now, the Schrödinger equation is solvable only for systems containing one electron only; for all other

systems, we use different techniques to approximate the wavefunction.

In 1931, Hückel [19] introduced a semiempirical method for approximating molecular orbitals for

conjugated molecules like benzene. Essentially, Hückel theory requires the determination of eigen-

vectors and eigenvalues of the molecular graph. In chemistry, a conjugated hydrocarbon can be repre-

sented by its molecular graph G, where the vertices of G represent the carbon atoms, and the edges of

G represent the carbon–carbon bonds of the conjugated hydrocarbon. In Hückel theory, the eigenvec-

tors of the adjacency matrix A(G) are identical to the Hückel molecular orbitals, and the eigenvalues

of A(G) are the energies corresponding to the Hückel molecular orbitals. The number of nonbonding

molecular orbitals (NBMOs) is identical with the multiplicity of the eigenvalue zero in the spectrum

of A(G). It turns out that Hückel theory is essentially the same thing as graph spectral theory for pla-

nar connected graphs with maximum degree 3 (see p. 89 of [31]). If η(G) > 0, then the molecule

corresponding to G have NBMOs in the Hückel spectrum, and such molecule should have open-shell

ground states and be very reactive. This implies molecular instability. In this paper we aim to find a

connection between the graph structure of G and the number η(G) or, equivalently, r(G).
If η(G) > 0 (resp. η(G) = 0), then G is said to be singular (resp. nonsingular). In 1957, Collatz

and Sinogowitz [10] posed the problem of characterizing all singular graphs. The problem is very

hard; only some particular results are known [5,6,12,13,16,17,23,25,26,28,29,32,33]. Motivated by

the problem of determining the structural features that force a graph G to be singular, many papers

investigated the influence of η(G) (or, equivalently, r(G)) on the structure of the graphG and vice versa

(see [3,5,7,17,18,20,24] for examples).

For a connected graph G on n vertices, it was shown in [27] (see also [8,18]) that r(G) = 2 if and

only if G is isomorphic to a complete bipartite graph Ka,b, where a + b = n, a, b > 0. In the same

paper it was also shown that r(G) = 3 if and only if G is isomorphic to a complete tripartite graph

Ka,b,c , where a + b + c = n, a, b, c > 0.

After [27] many authors [14,16,18,21,30] were interested in the following question: what is the

structure of a graph G with rank r(G) = 4? This question had not been fully answered in [14,16,18,

21,30]. In a very recent paper of ours [7], we completely resolve this question. A full characterization

of connected graphs G whose adjacency matrix has rank 4 was provided in [7]. This result was also

independently proved by Cheng and Liu [9].

In order to state the result proved in [7], we need to define a graph operation called multiplication

of vertices (see p. 53 of [15]). Given a graphGwithV(G) = {v1, v2, . . . , vn}. A subset I ⊆ V(G) is called
an independent set of G if there are no edges between any two vertices in I. Letm = (m1,m2, . . . ,mn)
be a vector of positive integers. Denote by G ◦ m the graph obtained from G by replacing each vertex

vi of G with an independent set of mi vertices v1i , v
2
i , . . . , v

mi

i and joining vsi with vtj if and only if vi

and vj are adjacent in G. We say that {v1i , v2i , . . . , vmi

i } is the vertices of G ◦m corresponding to vi. The

resulting graph G ◦m is said to be obtained from G bymultiplication of vertices. LetM(G1, G2, . . . , Gk)
be the collection of all graphs H which can be constructed from one of the graphs in {G1, G2, . . . , Gk}
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Fig. 1. The graphs Q1,Q2,Q3,Q4 and their ranks.
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Fig. 2. The graphs H1,H2,H3,H4,H5, K4, P4, P5 and their ranks.

bymultiplication of vertices. As examples, in Fig. 1, it can be seen that {Q1,Q2} ⊆ M(P4),Q3 ∈ M(C5)
and Q4 ∈ M(K3). Now we are in a position to state the main result in [7].

Theorem 1 [7]. Let G be a connected graph. Then r(G) = 4 if and only if G ∈ M(H1,H2,H3,H4,H5, K4,
P4, P5), where the graphs H1,H2,H3,H4,H5, K4, P4, P5 are depicted in Fig. 2.

With the notation and terminology introduced above we can restate the characterization of graphs G

having r(G) = 2 or r(G) = 3 as follows:

Theorem 2 [8,18,27]. Let G be a connected graph. Then

(a) r(G) = 2 if and only if G ∈ M(K2), and
(b) r(G) = 3 if and only if G ∈ M(K3).

The presentations of Theorems 1 and 2 lead to a certain natural question:

Question. Given a connected graph G, is there a family of graphs {Gi}ti=1 such that r(G) = 5 if and

only if G ∈ M(G1, G2, . . . , Gt).

A complete answer to this question will give a full characterization of graphs having rank 5. In

the literature, only a few partial results on the problem of characterizing graphs having rank 5 were

known: A characterization of connected graph G having pendant vertices with rank r(G) = 5 was

shown in [21,22]; in [16], Guo et al. characterized unicyclic graphs G with r(G) = 5 (see also [21]). A

characterization of bicyclic graphs and of tricyclic graphs G for which r(G) = 5 was given in [21].

In Theorem 3, whose proof appears in Section 2, we answer the above question in the affirmative.

All of the previous results in [16,21,22] about graphs G having r(G) = 5 are immediate corollaries of

Theorem 3.

Theorem 3. Let G be a connected graph. Then r(G) = 5 if and only if G ∈ M(G1, G2, . . . , G24), where

the graphs G1, G2, . . . , G24 are depicted in Fig. 3.
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Fig. 3. r(Gi) = 5 for i = 1, 2, . . . , 24.

2. The proof of Theorem 3

In this section we shall prove Lemmas 6–9, which imply our main result, Theorem 3, immediately.

The following notation and definitions are needed in the proofs of the lemmas in this section. For a

vertex x in G, the set of all vertices in G that are adjacent to x is denoted by NG(x). An edge {u, v}
between vertices u and v of G is also denoted by uv. The distance between u and v, denoted by dG(u, v),
is the smallest length of a u, v-path in graph G. The distance between a vertex u and a subgraph H of

G, denoted by dG(u,H), is defined to be the value min{dG(u, v) : v ∈ V(H)}. Given a subset S ⊆ V(G).
The subgraph of G induced by S, written as G[S], is defined to be the graph with vertex set S and edge

set {xy ∈ E(G) : x ∈ S and y ∈ S}. For v ∈ V(G) \ S, we write v ∼ S to mean that NG(v) ∩ S �= ∅, and
write v � S to mean that NG(v) ∩ S = ∅. We also write v � S to mean NG(v) ⊇ S, and write v � S to

mean v ∼ S and NG(v) � S. If S = {u1, u2, . . . , ut}, for brevity, we denote by G[u1, u2, . . . , ut] the
graph G[S]. For a subgraph H of G, let G \ H denote the subgraph of G which is induced by the vertices

of G not in H. Lemma 4 and Proposition 5 are implicitly used throughout the proofs of the results in

this section. The proof of Proposition 5 is straightforward and so is omitted.

Lemma 4 [10]. Suppose that G has a vertex x of degree 1. If graph H is obtained from G by deleting x

together with the vertex adjacent to x, then r(G) = r(H) + 2.

Proposition 5. For graphs G and H, if H ∈ M(G), then r(H) = r(G).

Lemma 6. Let G be a connected graph which has an induced subgraph isomorphic to C5. Then r(G) = 5

if and only if G ∈ M(C5).

Proof. The sufficient part of this lemma is clear since r(C5) = 5. To prove the necessary part we

assume that r(G) = 5. Let H be the largest possible induced subgraph of G which can be obtained

from C5 by multiplication of vertices. Suppose that E(C5) = {v0v1, v1v2, v2v3, v3v4, v4v0}. Let Vi =
{v1i , v2i , . . . , vmi

i } be the vertices of H corresponding to vi (0 � i � 4). To prove G = H, assume that

V(G \ H) �= ∅. Since G is connected, there is a vertex v ∈ V(G \ H) such that dG(v,H) = 1. Let

J = {i ∈ [0, 4] : v ∼ Vi}. We now consider the cardinality of J. If |J| = 1 or |J| � 3, then it is easy

to see that G contains an induced subgraph isomorphic to one of the graphs F1, F4, F5, F6, and F7 (see

Fig. 4), but this is a contradiction since all graphs Fi in Fig. 4 have r(Fi) � 6. It remains to consider the

case that |J| = 2. In this case, if v ∼ Vi and v ∼ Vi+1 for some i (subscripts are read modulo 5), then

F2 is an induced subgraph of G, a contradiction; if v ∼ Vi and v ∼ Vi+2 for some i (subscripts are read

modulo 5), then, by the choice of H, it must be v � Vi or v � Vi+2, it follows that F3 is an induced

subgraph of G, a contradiction. This completes the proof of Lemma 6. �
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F2 F3F1 F4 F5 F6 F7F2 F3F1 F4 F5 F6 F7

Fig. 4. r(Fi) � 6 for i = 1, 2, . . . , 7.

Fig. 5. r(Ai) � 6 for i = 1, 2, . . . , 15.

Lemma 7. Let G be a connected graph which has an induced subgraph isomorphic to P5. Then r(G) = 5

if and only if G ∈ M(G1, G2, . . . , G7), where the graphs G1, G2, . . . , G7 are depicted in Fig. 3.

Proof. The sufficient part of this lemma is clear. To prove the necessary part we assume that r(G) = 5.

LetH be the largest induced subgraph ofGwhich can be obtained from P5 bymultiplication of vertices,

where E(P5) = {v1v2, v2v3, v3v4, v4v5}. Let Vi be the vertices of H corresponding to vi (1 � i � 5).
We claim that dG(v,H) � 1 for all vertices v ∈ V(G). If not, there would exist an edge xy ∈ E(G \ H)
such that dG(x,H) = dG(y,H)+1 = 2. It can be seen that the subgraph of G induced by V(H)∪{x, y}
has rank 6, a contradiction.

Next, for a vertex v ∈ V(G \ H), denote by Nv the set {i ∈ [1, 5] : v ∼ Vi}. For J ⊆ {1, 2, 3, 4, 5},
let SJ = {v ∈ V(G \ H) : Nv = J}. First, we claim that S{i} = ∅ for 1 � i � 5. If not the case, then

by the choice of H it can be seen that G contains an induced subgraph isomorphic to one of the graphs

A1, A2, and A4 in Fig. 5, which contradicts to r(G) = 5. Second, we claim that SJ = ∅ when |J| = 2. If

not, then by the choice of H it can be seen that G contains an induced subgraph isomorphic to one of

the graphs A3, A4, . . . , A8 in Fig. 5, which contradicts to r(G) = 5. Furthermore, we claim that SJ = ∅
when |J| = 3 and J �∈ {{1, 2, 3}, {1, 3, 4}, {2, 3, 5}, {3, 4, 5}}. If not, then we see that G contains

an induced subgraph isomorphic to one of the graphs A9, A10, A11, A12 in Fig. 5, which contradicts to

r(G) = 5. We also claim that SJ = ∅ when |J| = 4 and J �∈ {{1, 2, 3, 4}, {2, 3, 4, 5}}. If it is not the
case, then we see that G contains an induced subgraph isomorphic to one of the graphs A13, A14 in

Fig. 5, which contradicts to r(G) = 5. Finally, it is clear that S{1,2,3,4,5} = ∅, since otherwise the graph

A15 of Fig. 5 would be an induced subgraph of G, a contradiction to r(G) = 5.

Fromwhatwehaveshownabove,weknowthatV(G\H) ⊆ ⋃
J∈I SJ ,whereI = {{1, 2, 3}, {3, 4, 5},

{1, 3, 4}, {2, 3, 5}, {1, 2, 3, 4}, {2, 3, 4, 5}}, andhencegraphG is completelydeterminedby theknowl-

edge of SJ (J ∈ I). To characterize the graph G we make the following claims (whose proofs will be

given later):

Claim 1. (a) If x ∈ S{1,2,3}, then NG(x) ⊇ V1 ∪ V2 ∪ V3. (b) If x ∈ S{1,3,4}, then NG(x) ⊇ V1 ∪ V3 ∪ V4.

(c) If x ∈ S{1,2,3,4}, then NG(x) ⊇ V1 ∪ V2 ∪ V3 ∪ V4.

Claim 2. (a) If S{1,2,3} �= ∅, then S{3,4,5} = S{2,3,4,5} = ∅. (b) If S{1,3,4} �= ∅, then S{2,3,5} = S{2,3,4,5} =
∅.
Claim 3. S{1,2,3}, S{1,3,4} and S{1,2,3,4} are independent sets in G.

Claim 4. Suppose that u ∈ S{1,2,3} and v ∈ S{1,2,3,4}. (a) We have uv �∈ E(G). (b) If x ∈ S{1,3,4}, then{ux, vx} ⊆ E(G). If z ∈ S{2,3,5}, then uz ∈ E(G). (c) If y ∈ S{2,3,4,5}, then vy �∈ E(G).

Proof of Claim 1. (a) Assume, to the contrary, thatNG(x) � V1 ∪V2 ∪V3. It can be seen that G contains

an induced subgraph isomorphic to one of the graphs B5, B6, B7 depicted in Fig. 6, a contradiction to

r(G) = 5. (b) Assume, to the contrary, thatNG(x) � V1 ∪V3 ∪V4. It follows that G contains an induced

subgraph isomorphic to one of the graphs B18, B19, B20 depicted in Fig. 6, a contradiction. (c) Assume,
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Fig. 6. r(Bi) � 6 for i = 1, 2, . . . , 26.

to the contrary, that NG(x) � V1 ∪ V2 ∪ V3 ∪ V4. It can be seen that G contains an induced subgraph

isomorphic to one of the graphs B22, B23, B24, B25 shown in Fig. 6, a contradiction to r(G) = 5. �

Note that Claim 1 will be implicitly used in the proofs of Claims 2–4.

Proof of Claim 2. (a) Suppose that S{1,2,3} �= ∅. Assume that one of the sets S{3,4,5} and S{2,3,4,5}
is non-empty. It can be seen that G contains an induced subgraph isomorphic to one of the graphs

B1, B2, B3, B4 shown in Fig. 6, which contradicts to r(G) = 5. (b) Suppose that S{1,3,4} �= ∅. Assume

that one of the sets S{2,3,5} and S{2,3,4,5} is non-empty. It follows that G contains an induced subgraph

isomorphic to one of the graphs B9, B10, B13, B14 in Fig. 6, a contradiction. �

Proof of Claim 3. Assume, to the contrary, that S{1,2,3}, S{1,3,4} and S{1,2,3,4} are not independent sets

of G. If there are two vertices x, y in S{1,2,3} such that x is adjacent to y, then B8 shown in Fig. 6 is an

induced subgraph of G, a contradiction. If there are two vertices x, y in S{1,3,4} such that x is adjacent

to y, then B21 shown in Fig. 6 is an induced subgraph of G, a contradiction. If there are two vertices

x, y in S{1,2,3,4} such that x is adjacent to y, then B26 shown in Fig. 6 is an induced subgraph of G, a

contradiction. �

Proof of Claim 4. (a) Assume, to the contrary, that uv ∈ E(G). It follows that B17 (see Fig. 6) is an

induced subgraph of G, a contradiction. (b) Assume, to the contrary, that {ux, uz, vx} � E(G). It can
be seen that G contains an induced subgraph isomorphic to one of the graphs B11, B15, B16 shown in

Fig. 6, a contradiction. (c) Assume, to the contrary, that vy ∈ E(G). It can be seen that B12 of Fig. 6 is an

induced subgraph of G, a contradiction. �

SinceH can be obtained from P5 bymultiplication of vertices, due to symmetry, the following result

is equivalent to Claim 2.

Claim 2′. (a) If S{3,4,5} �= ∅, then S{1,2,3} = S{1,2,3,4} = ∅. (b) If S{2,3,5} �= ∅, then S{1,3,4}
S{1,2,3,4} = ∅.

Now, by Claims 1,2,2′,3,4 and by symmetry of the graph H, we see that G is isomorphic to one of

the graphs H, G[V(H) ∪ S{1,2,3}], G[V(H) ∪ S{1,3,4}], G[V(H) ∪ S{1,2,3,4}], G[V(H) ∪ S{1,2,3} ∪ S{1,3,4}],
G[V(H) ∪ S{1,2,3} ∪ S{2,3,5}], G[V(H) ∪ S{1,2,3} ∪ S{1,2,3,4}], G[V(H) ∪ S{1,3,4} ∪ S{1,2,3,4}], G[V(H) ∪
S{1,2,3,4} ∪ S{2,3,4,5}], G[V(H) ∪ S{1,2,3} ∪ S{1,3,4} ∪ S{1,2,3,4}]. Note that G[V(H) ∪ S{1,2,3} ∪ S{1,3,4}] is
isomorphic to G[V(H) ∪ S{1,2,3} ∪ S{1,2,3,4}]. Since r(H) = r(G[V(H) ∪ S{1,3,4}]) = 4 and r(G) = 5, it

follows that G ∈ M(G1, G2, . . . , G7). This completes the proof of the lemma. �

Lemma 8. Let G be a connected graph which contains no induced C5 or P5 and contains an induced P4.

Then r(G) = 5 if and only if G ∈ M(G8, G9, . . . , G19), where G8, G9, . . . , G19 are depicted in Fig. 3.
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Fig. 7. r(Di) � 6 for i = 1, 2, . . . , 39.

Proof. The sufficient part of this lemma is clear. To prove the necessary part, given a connected graph

Gwhich contains no induced C5 or P5, we assume that r(G) = 5. LetH be the largest induced subgraph

of G which can be obtained from P4 by multiplication of vertices, where E(P4) = {v1v2, v2v3, v3v4}.
Let Vi be the vertices of H corresponding to vi (1 � i � 4). We claim that dG(v,H) � 1 for all vertices

v ∈ V(G). If not, there would exist an edge xy ∈ E(G \ H) such that dG(x,H) = dG(y,H) + 1 = 2. It

can be seen that G[V(H) ∪ {x, y}] has rank 6, a contradiction to r(G) = 5.

For a vertex v ∈ V(G \ H), denote by Nv the set {i ∈ [1, 4] : v ∼ Vi}. For J ⊆ {1, 2, 3, 4}, let
SJ = {v ∈ V(G \ H) : Nv = J}. With this notation, we claim that S{1} = S{4} = ∅, since G contains no

induced P5. Next, we claim that S{2} = S{3} = ∅. If not the case, say v ∈ S{2}, then by the choice of H it

can be seen that v � V2, and hence G contains an induced subgraphD1 shown in Fig. 7, a contradiction

to r(G) = 5. Since G contains no induced C5, it follows that S{1,4} = ∅. Furthermore, we claim that

S{1,3} = S{2,4} = ∅. If not, say v ∈ S{1,3}, then by the choice of H we see that either v � V1 or v � V3.

It follows that G contains an induced subgraph isomorphic to one of the graphs D1,D2 depicted in

Fig. 7, a contradiction.

From what we have proved so far, we know that V(G \ H) ⊆ ⋃
J∈I SJ , where I = {{1, 2}, {3, 4},

{2, 3}, {1, 2, 3}, {2, 3, 4}, {1, 2, 4}, {1, 3, 4}, {1, 2, 3, 4}}, and hence graph G is completely deter-

mined by the knowledge of SJ (J ∈ I). To characterize the graph G we make the following claims:

Claim 1. (a) If x ∈ S{1,2}, then NG(x) ⊇ V1 ∪V2. (b) If x ∈ S{2,3}, then NG(x) ⊇ V2 ∪V3. (c) If x ∈ S{1,2,3},
then NG(x) ⊇ V1 ∪ V2 ∪ V3. (d) If x ∈ S{1,2,4}, then NG(x) ⊇ V1 ∪ V2 ∪ V4. (e) If x ∈ S{1,2,3,4}, then
NG(x) ⊇ V1 ∪ V2 ∪ V3 ∪ V4.

Claim 2. SJ is an independent set in G for any J ⊆ {1, 2, 3, 4}.
Claim 3. (a) If S{1,2} �= ∅, then S{2,3} = S{1,2,3} = S{2,3,4} = S{1,2,3,4} = ∅. (b) If S{2,3} �= ∅, then
S{1,2,4} = S{1,3,4} = S{1,2,3,4} = ∅. (c) If S{1,2,3} �= ∅, then S{1,2,4} = S{2,3,4} = ∅.
Claim 4. (a) If u ∈ S{1,2} and x ∈ S{3,4} ∪ S{1,2,4}, then ux ∈ E(G). If u ∈ S{1,2} and x′ ∈ S{1,3,4}, then
ux′ /∈ E(G). (b) If u ∈ S{2,3} and x ∈ S{1,2,3} ∪ S{2,3,4}, then ux ∈ E(G). (c) If u ∈ S{1,2,3} and x ∈ S{1,3,4},
then ux ∈ E(G). If u ∈ S{1,2,3} and x′ ∈ S{1,2,3,4}, then ux′ /∈ E(G). (d) If u ∈ S{1,2,4} and x ∈ S{1,2,3,4},
then ux ∈ E(G). If u ∈ S{1,2,4} and x′ ∈ S{1,3,4}, then ux′ /∈ E(G).

Proof of Claim 1. (a) Assume, to the contrary, that NG(x) � V1 ∪ V2. It follows that G contains an

induced subgraph isomorphic to D3 or D4 (see Fig. 7), a contradiction to r(G) = 5. (b) Assume, to the

contrary, thatNG(x) � V2∪V3. It follows thatD12 of Fig. 7 is an induced subgraph ofG, a contradiction.

(c) Assume, to the contrary, that NG(x) � V1 ∪V2 ∪V3. It follows that G contains an induced subgraph

isomorphic to one of the graphs D18,D19,D20 depicted in Fig. 7, a contradiction. (d) Assume, to the

contrary, thatNG(x) � V1 ∪V2 ∪V4. It follows that G contains an induced subgraph isomorphic to one

of the graphs D26,D27,D28 depicted in Fig. 7. That is a contradiction. (e) Assume, to the contrary, that



4248 G.J. Chang et al. / Linear Algebra and its Applications 436 (2012) 4241–4250

NG(x) � V1 ∪ V2 ∪ V3 ∪ V4. It can be seen that either D30 or D31 (see Fig. 7) is an induced subgraph of

G, a contradiction to r(G) = 5. �

Proof of Claim 2. Since H can be obtained from P4 by multiplication of vertices, from what we have

already proved and by the symmetry of H, it suffices to consider the sets SJ , where

J ∈ {{1, 2}, {2, 3}, {1, 2, 3}, {1, 2, 4}, {1, 2, 3, 4}}. To show this, let us assume to the contrary that

x, y ∈ SJ and xy ∈ E(G). It can be seen that G contains an induced subgraph isomorphic to one of the

graphs D5,D13,D21,D29,D32 shown in Fig. 7, a contradiction to r(G) = 5. �

Proof of Claim 3. (a) Suppose that S{1,2} �= ∅. Assume, to the contrary, that one of the sets

S{2,3}, S{1,2,3}, S{2,3,4}, S{1,2,3,4} is non-empty. It can be seen that G contains an induced subgraph

isomorphic to P5 or to one of the graphs D6,D7, . . . ,D11 shown in Fig. 7, which is a contradiction to

the fact that G contains no induced P5 and r(G) = 5. (b) Suppose that S{2,3} �= ∅. Assume, to the

contrary, that one of the sets S{1,2,4}, S{1,3,4}, S{1,2,3,4} is non-empty. It follows that one of the graphs

D14,D15,D16,D17 depicted in Fig. 7 is an induced subgraph of G, a contradiction. (c) Suppose that

S{1,2,3} �= ∅. Assume, to the contrary, that either S{1,2,4} or S{2,3,4} is non-empty. It follows that G

contains an induced subgraph isomorphic to one of the graphs D22,D23,D24,D25 depicted in Fig. 7, a

contradiction to r(G) = 5. �

Proof of Claim 4. To prove this claim we assume, to the contrary, that either ux �∈ E(G) or ux′ ∈ E(G).
(a) In the case of ux �∈ E(G) and x ∈ S{3,4}, we see that D33 depicted in Fig. 7 is an induced subgraph of

G. In the case of ux �∈ E(G) and x ∈ S{1,2,4}, we see that P5 is an induced subgraph of G[V(H) ∪ {u, x}].
In the case of ux′ ∈ E(G) and x′ ∈ S{1,3,4}, we see that D34 depicted in Fig. 7 is an induced subgraph

of G. In any case, we obtain a contradiction to the fact that G contains no induced P5 and r(G) = 5.

(b) By hypothesis, we see that D35 is an induced subgraph of G. That is a contradiction to r(G) = 5. (c)

By hypothesis, we see that either D36 or D37 is an induced subgraph of G. This is a contradiction. (d)

By hypothesis, we see that either D38 or D39 (see Fig. 7) is an induced subgraph of G, a contradiction

arises. �

Since H can be obtain from P4 by multiplication of vertices, by Claims 1–4 together with symmetry

of the graph H , we see that G is isomorphic to one of the graphs H, G[V(H) ∪ S{1,2}], G[V(H) ∪ S{2,3}],
G[V(H)∪ S{1,2,3}], G[V(H)∪ S{1,2,4}], G[V(H)∪ S{1,2,3,4}], G[V(H)∪ S{1,2} ∪ S{3,4}], G[V(H)∪ S{1,2} ∪
S{1,2,4}], G[V(H) ∪ S{1,2} ∪ S{1,3,4}], G[V(H) ∪ S{2,3} ∪ S{1,2,3}], G[V(H) ∪ S{2,3} ∪ S{2,3,4}], G[V(H) ∪
S{1,2,3}∪S{1,3,4}],G[V(H)∪S{1,2,3}∪S{1,2,3,4}],G[V(H)∪S{1,2,4}∪S{1,3,4}],G[V(H)∪S{1,2,4}∪S{1,2,3,4}],
G[H∪S{1,2}∪S{3,4}∪S{1,2,4}],G[H∪S{1,2}∪S{1,2,4}∪S{1,3,4}],G[H∪S{1,2,3}∪S{1,3,4}∪S{1,2,3,4}],G[H∪
S{1,2,4} ∪ S{1,3,4} ∪ S{1,2,3,4}],G[H ∪ S{1,2} ∪ S{3,4} ∪ S{1,2,4} ∪ S{1,3,4}].

Since r(H) = r(G[V(H) ∪ S{2,3}]) = r(G[V(H) ∪ S{1,2,4}]) = r(G[V(H) ∪ S{1,2,4} ∪ S{1,3,4}]) = 4,

G[V(H)∪ S{1,2} ∪ S{1,3,4}] ∼= G11, G[V(H)∪ S{1,2,3} ∪ S{1,2,3,4}] ∼= G14, and G[V(H)∪ S{1,2} ∪ S{1,2,4} ∪
S{1,3,4}] ∼= G16, bywhatwehave proved so far, it can be seen directly thatG ∈ M(G8, G9, . . . , G19). �

Lemma 9. Let G be a connected graph which contains no induced P4. Then r(G) = 5 if and only if

G ∈ M(G20, G21, G22, G24), where G20, G21, G22, G24 are depicted in Fig. 3.

Proof. The sufficient part of this lemma is clear. To prove the necessary part we assume that r(G) = 5.

Let t be the maximum size of a complete subgraph in G. It is clear that t � 5, since r(K6) = 6 > r(G).
LetH be the largest induced subgraph ofGwhich can be obtained from Kt bymultiplication of vertices,

where V(Kt) = {v1, v2, . . . , vt}. Let Vi be the vertices of H corresponding to vi (1 � i � t). For a
vertex v ∈ V(G \ H), denote by Nv the set {i ∈ [1, t] : v ∼ Vi}. For J ⊆ {1, 2, . . . , t}, let SJ = {v ∈
V(G\H) : Nv = J}. Now let us observe that the following property holds for every vertex v ∈ V(G\H).
Property P . If v ∼ Vi and v � Vj for some 1 � i, j � t, then v � Vi.

To prove Property P , assume that {x, y} ⊆ Vi such that vx ∈ E(G) and vy �∈ E(G). For any z ∈ Vj ,

it can be seen that G[v, x, z, y] is an induced P4 in G, a contradiction. We remark that, in the sequel,

Property P will be used without explicit reference to it.
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Fig. 8. r(Ei) � 6 for any i = 1, 2 . . . , 8.

When t = 5, we claim that G ∼= H. If this is not the case, then there is a vertex v ∈ V(G \ H) such
that dG(v,H) = 1. By the choice of H, we see that v �∈ SJ when |J| = 4. It follows that G contains an

induced subgraph isomorphic to one of the graphs E1, E2, E3 shown in Fig. 8. That is a contradiction to

r(G) = 5. Therefore, G ∈ M(G24) provided that t = 5.

Now the remaining proof of Lemma 9 is divided into two parts according to the value of t.

Part I. Suppose that t = 4. First note that dG(v,H) � 1 for any v ∈ V(G). If this is not the case,

there would exist an edge xy ∈ E(G \ H) such that dG(x,H) = dG(y,H) + 1 = 2. It can be seen that

G[V(H) ∪ {x, y}] has rank 6, a contradiction to r(G) = 5. Next, by the choice of H and t = 4, we see

that S{1,2,3} = S{1,2,4} = S{1,3,4} = S{2,3,4} = S{1,2,3,4} = ∅.
Claim1. (a) If S{1} �= ∅, thenSJ = ∅,where |J| � 2and J �= {1}. (b) If S{1,2} �= ∅, thenS{3,4} = S{2,3} = ∅.
Proof of Claim 1. (a) When x ∈ S{1} and y ∈ S{2} ∪ S{2,3}, we see that either G[{x} ∪ V1 ∪ V2 ∪ {y}] or
G[{y, x}∪V1∪V4] contains an induced P4, that is a contradiction.When x ∈ S{1} and y ∈ S{1,2}, we see

that if xy ∈ E(G), then G[{x, y} ∪ V2 ∪ V3] contains an induced P4, a contradiction; if xy �∈ E(G), then
E5 (see Fig. 8) is an induced subgraph of G, a contradiction again. This completes the proof. (b) When

x ∈ S{1,2} and y ∈ S{3,4}, we see that if xy �∈ E(G) then G[{x} ∪ V2 ∪ V3 ∪ {y}] contains an induced P4,

a contradiction; if xy ∈ E(G), then E7 (see Fig. 8) is an induced subgraph of G, a contradiction again.

When x ∈ S{1,2} and y ∈ S{2,3}, we see that if xy ∈ E(G), then G[{x, y} ∪ V3 ∪ V4] contains an induced

P4, a contradiction; if xy �∈ E(G), then G[{x} ∪ V1 ∪ V3 ∪ {y}] contains an induced P4, a contradiction

again. �

Claim 2. S{1} and S{1,2} are independent sets in G.

Proof of Claim 2. Suppose that xy ∈ E(G). If x, y ∈ S{1}, then E4 shown in Fig. 8 is an induced subgraph

of G, a contradiction to r(G) = 5. If x, y ∈ S{1,2}, then E6 depicted in Fig. 8 is an induced subgraph of

G, a contradiction. This completes the proof of this claim. �

Now, by Claim 1, Claim 2 and symmetry of the graph H, we see that G is isomorphic to one the

graphs H, G[V(H) ∪ S{1}] and G[V(H) ∪ S{1,2}]. Since r(H) = 4, it must be G ∈ M(G20, G21). This
completes the proof of Part I of the lemma.

Part II. Suppose that t = 3. Since G contains no induced P4, it follows that dG(v,H) � 1 for any

v ∈ V(G). Note that S{1,2,3} = ∅, since t = 3.

Claim. (a) S{1,2} = S{1,3} = S{2,3} = ∅. (b) If S{1} �= ∅, then S{2} = ∅.
Proof of the Claim. (a) Assume, to the contrary, that x ∈ S{1,2}. Recall that if v ∼ Vi and v � Vj for

some 1 � i, j � 3, then v � Vi. Therefore G[V(H) ∪ {x}] can be obtained from K3 by multiplication of

vertices, a contradiction to the choice ofH. (b) If x ∈ S{1} and y ∈ S{2}, then eitherG[{x}∪V1∪V2∪{y}]
or G[{x, y} ∪ V2 ∪ V3] contains an induced P4, a contradiction. �

Note that G is not isomorphic to H, since r(H) = 3 and r(G) = 5. The above claim shows that V(G)
is equal to V(H) ∪ S{i} for some i ∈ {1, 2, 3}. Without loss of generality, say V(G) = V(H) ∪ S{1}.
Clearly S{1} is not an independent set of G, since r(G) = 5. Let xy be an edge in the subgraph of G

induced by S{1}. We claim that if z ∈ S{1} \ {x, y}, then z is adjacent to exactly one vertex in {x, y}.
Indeed, if {zx, zy} ⊆ E(G), then K4 is a subgraph of G, a contradiction to t = 3; if {zx, zy} ∩ E(G) = ∅,
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then E8 shown in Fig. 8 is an induced subgraph of G, a contradiction to r(G) = 5. Denote by Sx the set

{v ∈ S{1} \ {x, y} : vx ∈ E(G)}, and denote by Sy the set {v ∈ S{1} \ {x, y} : vy ∈ E(G)}. Note that

Sx (and hence Sy) is an independent set of G, since t = 3. For u ∈ Sx and v ∈ Sy, we claim that u is

adjacent to v. If this is not the case, then G[u, x, y, v] is an induced P4, a contradiction. From what we

have proved so far, we see that G[Sx ∪ Sy] is a complete bipartite graph. Now we can conclude that

G ∈ M(G22). This completes the proof of Part II of the lemma. �
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