18 research outputs found
Modulation of Prothrombinase Assembly and Activity by Phosphatidylethanolamine
Constituents of platelet membranes regulate the activity of the prothrombinase complex. We demonstrate that membranes containing phosphatidylcholine and phosphatidylethanolamine (PE) bind factor Va with high affinity (Kd = ∼10 nm) in the absence of phosphatidylserine (PS). These membranes support formation of a 60–70% functional prothrombinase complex at saturating factor Va concentrations. Although reduced interfacial packing does contribute to factor Va binding in the absence of PS, it does not correlate with the enhanced activity of the Xa-Va complex assembled on PE-containing membranes. Instead, specific protein-PE interactions appear to contribute to the effects of PE. In support of this, soluble C6PE binds to recombinant factor Va2 (Kd = ∼6.5 μm) and to factor Xa (Kd = ∼91 μm). C6PE and C6PS binding sites of factor Xa are specific, distinct, and linked, because binding of one lipid enhances the binding and activity effects of the other. C6PE triggers assembly (Kdapp = ∼40 nm) of a partially active prothrombinase complex between factor Xa and factor Va2, compared with Kdapp for C6PS ∼2 nm. These findings provide new insights into the possible synergistic roles of platelet PE and PS in regulating thrombin formation, particularly when exposed membrane PS may be limiting
Hyperaccumulator plants from China: a synthesis of the current state of knowledge
Hyperaccumulator plants are the material basis for phytoextraction research and for practical applications in decontaminating polluted soils and industrial wastes. China's high biodiversity and substantial mineral resources make it a global hotspot for hyperaccumulator plant species. Intensive screening efforts over the past 20 years by researchers working in China have led to the discovery of many different hyperaccumulators for a range of elements. In this review, we present the state of knowledge on all currently reported hyperaccumulator species from China, including Cardamine hupingshanensis (selenium, Se), Dicranopteris dichotoma (rare earth elements, REEs), Elsholtzia splendens (copper, Cu), Phytolacca americana (manganese, Mn), Pteris vittata (arsenic, As), Sedum alfredii, and Sedum plumbizincicola (cadmium/zinc, Cd/Zn). This review covers aspects of the ecophysiology and molecular biology of tolerance and hyperaccumulation for each element. The major scientific advances resulting from the study of hyperaccumulator plants in China are summarized and synthesized
Interpretation of inverted photocurrent transients in organic lead halide perovskite solar cells: proof of the field screening by mobile ions and determination of the space charge layer widths
In Methyl Ammonium Lead Iodide (MAPI) perovskite solar cells, screening of the built-in field by mobile ions has been proposed as part of the cause of the large hysteresis observed in the current/voltage scans in many cells. We show that photocurrent transients measured immediately (e.g. 100 μs) after a voltage step can provide direct evidence that this field screening exists. Just after a step to forward bias, the photocurrent transients are reversed in sign (i.e. inverted), and the magnitude of the inverted transients can be used to find an upper bound on the width of the space charge layers adjacent to the electrodes. This in turn provides a lower bound on the mobile charge concentration, which we find to be ≳1 × 1017 cm−3. Using a new photocurrent transient experiment, we show that the space charge layer thickness remains approximately constant as a function of bias, as expected for mobile ions in a solid electrolyte. We also discuss additional characteristics of the inverted photocurrent transients that imply either an unusually stable deep trapping, or a photo effect on the mobile ion conductivity
Molecular cloning of ten distinct hypervariable regions from the cellulose synthase gene superfamily in aspen trees
Recent molecular genetic data suggest that cellulose synthase (CesA) genes coding for the enzymes that catalyze cellulose biosynthesis (CESAs) in Arabidopsis and other herbaceous plants belong to a large gene family. Much less is known about CesA genes from forest trees. To isolate new CesA genes from tree species, discriminative but easily obtainable homologous DNA probes are required. Hypervariable regions (HVRII) of CesA genes represent highly divergent DNA sequences that can be used to examine structural, expressional and functional relationships among CesA genes. We used a reverse transcriptase-polymerase chain reaction (RT-PCR)-based technique to identify HVRII regions from eight types of CesA genes and two types of CesA-like D (CslD) genes in quaking aspen (Populus tremuloides Michx.). Comparison of these aspen CESA/CSLD HVRII regions with the predicted proteins from eight full-length CesA/CslD cDNAs available in our laboratory and with searches for aspen CesA/CslD homologs in the recently released Populus trichocarpa Torr. & A. Gray, genome confirmed the utility of this approach in identifying several CesA/CslD gene members from the Populus genome. Phylogenetic analysis of 56 HVRII domains from a variety of plant species suggested that at least six distinct classes of CESAs exist in plants, supporting a previous proposal for renaming HVRII regions as class-specific regions (CSR). This method of CSR cloning could be applied to other crop plants and tree species, especially softwoods, for which the whole genome sequence is unlikely to become available in the near future because of the large size of these genomes
Genomics of cellulose biosynthesis in poplars
Genetic improvement of cellulose production in commercially important trees is one of the formidable goals of current forest biotechnology research. To achieve this goal, we must first decipher the enigmatic and complex process of cellulose biosynthesis in trees. The recent availability of rich genomic resources in poplars make Populus the first tree genus for which genetic augmentation of cellulose may soon become possible. Fortunately, because of the structural conservation of key cellulose biosynthesis genes between Arabidopsis and poplar genomes, the lessons learned from exploring the functions of Arabidopsis genes may be applied directly to poplars. However, regulation of these genes will most likely be distinct in these two-model systems because of their inherent biological differences. This research review covers the current state of knowledge about the three major cellulose biosynthesis-related gene families from poplar genomes: cellulose synthases, sucrose synthases and korrigan cellulases. Furthermore, we also suggest some future research directions that may have significant economical impacts on global forest product industries. © New Phytologist (2004)
The role of vision in academic school performance
10.3109/09286580903450320Ophthalmic Epidemiology17118-2