33 research outputs found

    A Discrete-Time Algorithm for Stiffness Extraction from sEMG and Its Application in Antidisturbance Teleoperation

    Get PDF
    © 2016 Peidong Liang et al. We have developed a new discrete-time algorithm of stiffness extraction from muscle surface electromyography (sEMG) collected from human operator's arms and have applied it for antidisturbance control in robot teleoperation. The variation of arm stiffness is estimated from sEMG signals and transferred to a telerobot under variable impedance control to imitate human motor control behaviours, particularly for disturbance attenuation. In comparison to the estimation of stiffness from sEMG, the proposed algorithm is able to reduce the nonlinear residual error effect and to enhance robustness and to simplify stiffness calibration. In order to extract a smoothing stiffness enveloping from sEMG signals, two enveloping methods are employed in this paper, namely, fast linear enveloping based on low pass filtering and moving average and amplitude monocomponent and frequency modulating (AM-FM) method. Both methods have been incorporated into the proposed stiffness variance estimation algorithm and are extensively tested. The test results show that stiffness variation extraction based on the two methods is sensitive and robust to attenuation disturbance. It could potentially be applied for teleoperation in the presence of hazardous surroundings or human robot physical cooperation scenarios

    An Augmented Discrete-Time Approach for Human-Robot Collaboration

    Get PDF
    Human-robot collaboration (HRC) is a key feature to distinguish the new generation of robots from conventional robots. Relevant HRC topics have been extensively investigated recently in academic institutes and companies to improve human and robot interactive performance. Generally, human motor control regulates human motion adaptively to the external environment with safety, compliance, stability, and efficiency. Inspired by this, we propose an augmented approach to make a robot understand human motion behaviors based on human kinematics and human postural impedance adaptation. Human kinematics is identified by geometry kinematics approach to map human arm configuration as well as stiffness index controlled by hand gesture to anthropomorphic arm. While human arm postural stiffness is estimated and calibrated within robot empirical stability region, human motion is captured by employing a geometry vector approach based on Kinect. A biomimetic controller in discrete-time is employed to make Baxter robot arm imitate human arm behaviors based on Baxter robot dynamics. An object moving task is implemented to validate the performance of proposed methods based on Baxter robot simulator. Results show that the proposed approach to HRC is intuitive, stable, efficient, and compliant, which may have various applications in human-robot collaboration scenarios

    On the effects of the ocean on atmospheric CFC-11 lifetimes and emissions

    Get PDF
    The ocean is a reservoir for CFC-11, a major ozone-depleting chemical. Anthropogenic production of CFC-11 dramatically decreased in the 1990s under the Montreal Protocol, which stipulated a global phase out of production by 2010. However, studies raise questions about current overall emission levels and indicate unexpected increases of CFC-11 emissions of about 10 Gg ⋅ yr−1 after 2013 (based upon measured atmospheric concentrations and an assumed atmospheric lifetime). These findings heighten the need to understand processes that could affect the CFC-11 lifetime, including ocean fluxes. We evaluate how ocean uptake and release through 2300 affects CFC-11 lifetimes, emission estimates, and the long-term return of CFC-11 from the ocean reservoir. We show that ocean uptake yields a shorter total lifetime and larger inferred emission of atmospheric CFC-11 from 1930 to 2075 compared to estimates using only atmospheric processes. Ocean flux changes over time result in small but not completely negligible effects on the calculated unexpected emissions change (decreasing it by 0.4 ± 0.3 Gg ⋅ yr−1). Moreover, it is expected that the ocean will eventually become a source of CFC-11, increasing its total lifetime thereafter. Ocean outgassing should produce detectable increases in global atmospheric CFC-11 abundances by the mid-2100s, with emission of around 0.5 Gg ⋅ yr−1; this should not be confused with illicit production at that time. An illustrative model projection suggests that climate change is expected to make the ocean a weaker reservoir for CFC-11, advancing the detectable change in the global atmospheric mixing ratio by about 5 yr

    Baichuan 2: Open Large-scale Language Models

    Full text link
    Large language models (LLMs) have demonstrated remarkable performance on a variety of natural language tasks based on just a few examples of natural language instructions, reducing the need for extensive feature engineering. However, most powerful LLMs are closed-source or limited in their capability for languages other than English. In this technical report, we present Baichuan 2, a series of large-scale multilingual language models containing 7 billion and 13 billion parameters, trained from scratch, on 2.6 trillion tokens. Baichuan 2 matches or outperforms other open-source models of similar size on public benchmarks like MMLU, CMMLU, GSM8K, and HumanEval. Furthermore, Baichuan 2 excels in vertical domains such as medicine and law. We will release all pre-training model checkpoints to benefit the research community in better understanding the training dynamics of Baichuan 2.Comment: Baichuan 2 technical report. Github: https://github.com/baichuan-inc/Baichuan

    Research of Hand–Eye System with 3D Vision towards Flexible Assembly Application

    No full text
    In order to improve industrial production efficiency, a hand–eye system based on 3D vision is proposed and the proposed system is applied to the assembly task of workpieces. First, a hand–eye calibration optimization algorithm based on data filtering is proposed in this paper. This method ensures the accuracy required for hand–eye calibration by filtering out part of the improper data. Furthermore, the improved U-net is adopted for image segmentation and SAC-IA coarse registration ICP fine registration method is adopted for point cloud registration. This method ensures that the 6D pose estimation of the object is more accurate. Through the hand–eye calibration method based on data filtering, the average error of hand–eye calibration is reduced by 0.42 mm to 0.08 mm. Compared with other models, the improved U-net proposed in this paper has higher accuracy for depth image segmentation, and the Acc coefficient and Dice coefficient achieve 0.961 and 0.876, respectively. The average translation error, average rotation error and average time-consuming of the object recognition and pose estimation methods proposed in this paper are 1.19 mm, 1.27°, and 7.5 s, respectively. The experimental results show that the proposed system in this paper can complete high-precision assembly tasks

    Development of a robotic teaching interface for human to human skill transfer

    No full text
    The tutor-tutee hand-in-hand teaching may be the most effective approach for a tutee to acquire new motor skills. Repetitive nature of such procedures in a group setting usually results in a high labour cost and time inefficiency. Potential solution can be utilizing robotic platforms playing the role of tutors for demonstrating and transferring the required skills. This requires an appropriate guidance scheme to integrate the tutor's motor functionalities into the robot's control architecture. For instance, for hand-in-hand supervision of the writing task, the tutor's corrections can be applied when necessary, while a very compliant motion can be achieved if no errors are detected. Inspired by this behavior, we develop a teaching interface using a dual-arm robotic platform. In our setup, one arm is connected to the tutees arm providing guidance through a variable stiffness control approach, and the other to the tutor to capture the motion and to feedback the tutees performance in a haptic manner. The reference stiffness for the tutors arm stiffness is estimated in real-time and replicated by the tutees robotic arm. Comparative experiments have been carried out on a dual-arm Baxter robot. The results imply that the human tutor is able to intuitively transfer writing skills to the tutee and also show superior learning performance over over some conventional teaching by demonstration techniques
    corecore