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Human-robot collaboration (HRC) is a key feature to distinguish the new generation of robots from conventional robots. Relevant
HRC topics have been extensively investigated recently in academic institutes and companies to improve human and robot
interactive performance. Generally, human motor control regulates human motion adaptively to the external environment with
safety, compliance, stability, and efficiency. Inspired by this, we propose an augmented approach to make a robot understand
human motion behaviors based on human kinematics and human postural impedance adaptation. Human kinematics is identified
by geometry kinematics approach to map human arm configuration as well as stiffness index controlled by hand gesture to
anthropomorphic arm. While human arm postural stiffness is estimated and calibrated within robot empirical stability region,
human motion is captured by employing a geometry vector approach based on Kinect. A biomimetic controller in discrete-time
is employed to make Baxter robot arm imitate human arm behaviors based on Baxter robot dynamics. An object moving task is
implemented to validate the performance of proposed methods based on Baxter robot simulator. Results show that the proposed
approach to HRC is intuitive, stable, efficient, and compliant, which may have various applications in human-robot collaboration

scenarios.

1. Introduction

HRC represents most key characters of next generation of
robots working without cages and sharing the same work-
space with human community [1, 2]. It allows human to
interact with robots physically with safety and compliance
guaranteed. Therefore, HRC has a variety of applications in
home care [3], office, industry [4], agriculture [5], school
educations, rehabilitation, and various human motor skill
training scenarios, while collaborative robots are being
extensively investigated by more researchers and technology
companies and may be expected to dominate robot fields in
the next few years [6].

Conventional industrial robots have a lot of advantages
such as working with precision and speed, but they are
relying on high stiffness, high precise parts and components,
and complicated control systems. This makes them relatively
expensive, inflexible, and dangerous for humans [7]. More-
over, due to these disadvantages, such robots are only suitable

and efficient for simple and repeated tasks in structured
environment. However, the factory production should be
more flexible and smart to meet diversity and personalization
of customer demand which tends to be mainstream in the
future [8]. Correspondingly, robots are required to fulfil more
dexterous and compliant tasks to reduce human workload
and improve the quality of products. Conventionally, this
requires expert modelling and programming skills that only
a few people can implement such skill transfer, which dis-
courages median or small companies to employ robots in
the production line. Therefore, an intuitive and augmented
approach to human-robot complicated skills transfer will
make robot application more practical and remove the virtual
cage between human and robot completely [9]. For example,
service robot needs to perfectly fit customer’s need in home
or office scenarios, and such kind of robots needs to interact
with different stages of people with different cognitive and
knowledge background. So HRC with intuitive human-robot
interface will be compliant and efficient way to extend human



FIGURE 1: Typical human-robot safe collaboration system.

and robot workspace and applicable areas. On the other hand,
as the new generation of robots, namely, collaborative robots
(e.g., Figure1), are expected to share the same workspace with
humans, safety is a key for collaborative robotics [7], which
is often achieved through complex control systems [10], but
robots are rarely designed to be safe. The economic way is
to make robot arm human-like and as compliant as human
limb and impedance of the robots can be adapted to dynamic
environment [11]. Thus, the studies on compliant control
have received increasing attentions [12, 13], in the tasks
involving uncertain and dynamic environment, for example,
physical human-robot cooperation [14-16]. Most existing
relevant research work can be generally classified into three
categories: (i) design of compliant mechanism by using active
(e.g., KUKA LBR [17] and Barrett WAM Arm [18]), passive
(e.g., AWAS [19]), or hybrid (e.g., DLR hand-arm system
[20]) robot joints with intrinsic compliance to provide a safe
and user friendly interface for implementation of telecontrol
by adapting robot joint impedance; (ii) online optimisation
of impedance regulations for specific tasks in constructed
environment, whereas the impedance tuning algorithms rely
on an accurate robot-environmental interaction model [21];
(iii) biomimetic control, instead of automatic control, robot
can imitate human compliance and adaptivity by learning
human stiffness regulation [22-24]. Therefore, telimpedance
control which enables a target relation between force and
displacement [25] is ideal for robots to perform tasks with
human and environment in a safer and more natural way
[26, 27].

For an effective HRC with safety, compliance, and stabil-
ity, it is crucial to enable the robots to be capable of integrating
interactive cognition and manipulation with humans, similar
to the mechanisms involved in human-human interaction
[28], while in this paper we carry on a preliminary research
on single human motor adaptation behaviour in specific
tasks; for example, in object moving tasks, human tends to
exert force along the direction where the stiffness amplitude
is relatively larger in [29]. Inspired by human mechanical
impedance adaptivity to various environments [30], human
motor skill extractions via EMG and biomimetic learning
controller [31, 32] are developed to achieve more natural
and efficient performance, as they directly reflect impedance
variation without disturbing motor control during the task.
EMG signals represent muscle activation regulated by central
neutral system (CNS) and can be used to estimate limb
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stiffness for compliant demonstration, though the precise
estimation is still a challenge due to muscle fatigue, noise
perturbation and estimation model error, and so forth [33-
35]. In [26], SEMG based human-machine interface was
designed for teleimpedance control though without force
feedback or autonomous controller after transferring human
impedance regulations to robot. Furthermore, human can
change arm posture to adapt stiffness as well.

Augmented HRC can be exploited by human arm motion
[36] and stiffness profile recognition and imitation. Accord-
ing to different hardware equipment employed in human
motion recognition, human motion extraction methods can
be divided into two categories: (i) contact methods by
employing wearable sensors. In [37, 38] Inertial Measurement
Units (IMU) are used to collect human motion angles for
human motion recognition and interaction with robot, while
such methods require humans to wear specific devices,
which may induce inconvenience in HRC. (ii) Noncontact
technology: Date et al. [39] proposed a vision-based inverse
kinematics approach to estimate full-body motion of human
model which has 23 DOFs via visual cues. Noncontact
methods do not need to put any physical devices on humans
and provide a natural way to capture human motion though
it may bring occlusion. In addition, human gesture also plays
a significant role in human-robot interaction.

Gesture information acquisition is similar to human
motion extraction. It can be divided into vision-based and
wearable sensors-based methods. Starner et al. [40] and
Shanableh et al. [41] achieved American and Arab sign lan-
guage recognition, respectively, based on vision information.
Liang and Ouhyoung [42] and Starner and Pentland [43]
and Kim et al. [44] recognized their sign languages using
data collected by Data Glove. Although Data Glove has high
precision, its high price and cumbersome-wearing prevent
its extensive usability. As for the human motion analysis,
most researchers employ inverse kinematics method. Seven-
DOF human arm is a redundant manipulator, so when
given the hand position and attitude, there are infinite
solutions for the inverse kinematics. Moradi and Lee [45]
defined a redundancy circle and used a position as the
redundancy parameter to solve this problem. Fang and Ding
[46] proposed a three-level task-motion planning framework
and used a human arm triangle space to solve the motion
plan of human arm. Based on the description of the human
arms posture [47], we proposed a novel approach, geometry
vector method, which can calculate each joint angle of a 7-
DOF human arm by just using the 3D points of each joint.
We used Kinect sensor [48] (version 2.0) to get the 3D
coordinates of each joint. Kinect is a depth camera developed
by Microsoft Company and can be rapidly used in action
tracking and gesture recognition. Furthermore, compared
with other sensors, Kinect is a humanized device and it needs
no touch with humans.

In this paper, a virtual Baxter robot setup is employed
with one Baxter robot arm used as slave arm (see Fig-
ure 2). Motion estimation from Kinect is utilised to estimate
demonstrator’s limb postural stiffness. Instead of estimating
absolute human endpoint stiffness and motion, discrete-time
stiffness estimation and motion extraction are employed to
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FIGURE 2: Profile of HRC in discrete-time. Human arm endpoint stiffness, forward kinematic, and postural stiffness are estimated in discrete-

time and transfer to Baxter robot via biomimetic controller.

eliminate signal drift and the residual errors. In Section 2,
methods are depicted for human arm postural stiffness
estimation and motion extraction, as well as discrete-time
biomimetic controller design. In Section 3, experimental
setup is presented. Results are revealed in Section 4 followed
by conclusion in Section 5.

2. Methods

2.1. Human Arm Postural Stiffness Modelling. Relevant re-
search work indicates that limb impedance represents human

[];:T (Q(i)) - ];TT (%—1))] fex(i)

skill performance [49]. Therefore, extraction of impedance
regulations from human is a potential way to transfer human
experienced skills to robots compared to conventional math-
ematical modelling. Generally, human upper limb endpoint
stiffness is mainly determined by muscle cocontraction and
geometry pose. This means we can adapt our arm stiffness by
muscle cocontraction as well as arm pose change, while, in
this paper, we mainly investigate the effect of arm pose on
interacting with external forces. According to [50], human
endpoint stiffness in Cartesian space can be denoted by
muscle stiffness and postural stiffness in

K. (i) = T (4a-n) {K, (i) -
Kc (l - 1)

i is time constant, g € R’ is a vector of 7 joint angles of arm,
J(q) € R® isarm Jacobian matrix, K, € R is the endpoint
or Cartesian stiffness, K; € R isjoint stiffness, and £, € R°
is the external force applied to endpoint. Obviously human
endpoint stiffness mainly depends on Jacobian (posture),
joint stiffness, gravity, and motion. The arm joint angles g
of human will be estimated by Kinect; consequently, the
Jacobian matrix J(q) can be calculated using human arm
joint angles and skeleton link length. According to [51, 52],
we assume that joint stiffness K; can be represented as
multiplication of an intrinsic constant stiffness A, so K; = A;
o(i — 1) is the gravity contribution to the human endpoint
stiffness

K () =" (@60) My (@uyy) +o (= 1),
A=P@-1)e(i-1),

)

96y — 4G-1)

} I () + o () if qg) # g (1)

if q) = q-)-

where A € R™ and ¢ € R’ are stiffness coefficients,
respectively. Here, the stiffness index A can be adapted
according to different scenarios. In this paper, we employ
hand posture P in discrete-time to indicate A variations.
For example, fist usually suggests that humans increase arm
stiffness to keep arm stable against external disturbance or
output strong force. Thus we can employ hand gesture to
control robot stiffness index based on empirically identified
human arm stiffness.

2.2. Human Arm Jacobian Estimation. Figure 3 shows the
reference and link coordinate systems of the 7-DOF human
arm using Denavit-Hartenberg (D-H) method. The D-H
parameters of the kinematic model of the human arm are
listed in Table 1, where d;, ds, and [, are the lengths of upper
arm, forearm, and palm, respectively. According to the D-H
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FIGURE 3: Human arm model and its primary D-H coordinate system and the initial position of each joint angle.
TABLE 1: D-H parameters of the human arm. N, 0y a4y, Py
: n, o, a, p
Joint 0, d, I, o; 1T7 |7 (6)
1 q, (0°) 0 0 90° n, o, a, p,
2 9> (900) 0 0 90° 0O 0 0 1
3 q; (-90°) d, 0 90°
. . i i i+1 6
4 q, (180°) 0 0 90 T, =T, T, T,. 7)
5 gs (90°) ds 0 90°
6 g (~90°) 0 0 90° Now, the problem of getting Jacobian matrix is equal
3 . . . .
7 g, (180°) 0 L 0 to calculating all of the 7 joint angles. By using Kinect

method, the description of the coordination transformation
from frame i to frame i — 1 is shown in

i—1 Ti
cos0; —cosa;sinf; sinw;sin®; I;coso,
sinf; cosw;cosB; —sinw;cosO; I;sin0; (3)
) sin o; cos ; d;
0 0 0 1

Human arm Jacobian matrix J,(q) is related to each angle of
human arm joints and is shown in

@=L T s T ), @)

where T J; can be calculated from (5) and (6) and iT7 is the
coordination transformation from frame i to the end-effector
frame and it can be deviated from (7). Consider

—_nxpy + nypx 1
_Oxpy + prx
- +

T],' _ axpy aypx X (5)

n,

0

a

L z ..

sensor, we can have the skeleton data of human body directly,
which include 25 joints 3D positions relative to the camera
coordinate as shown in the left of Figure 4. Then, the
geometry model of human left arm is built as seen in the right
of Figure 4; we take the point HipLeft as the origin of the base
—
coordinate, while x-axis is in the same direction of vector AO.
—
And y-axis is along with vector OC. Itis easy to get the normal
— > —
vector of each axis of the base coordinate, X, Y, and Z, (note

N
that X; is the normal vector of x-axis in coordinate 7):

- _ A0
- _0OC (8)
" loc|

In order to calculate all of the joint angles correctly, two
conditions should exist: (i) human should stand straight and
keep the body vertical to the ground as far as possible and
(ii) the thumb must be in the same plane with the palm
during their motion because we need the plane consisting
of points of thumb, wrist, and hand to calculate some other
joint angles. These seven angles are all in the joint space, and
their initial positions are displayed in Figure 3. The geometry
vector method we proposed is based on the principle of cosine
value of two vectors shown in (9). What is more, the angle
between two planes can be got by using their normal vector.
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FIGURE 4: Body skeleton map consisting of 25 joints captured by Kinect and Human arm motion model in joint space.

As we all know, the scope of the angle between two angles
is from 0 to 7; thus, this should be taken into consideration
upon solving the 7 joint angles:

- o
V.-V,

cos \71),\72)> = W 9)
1] V2

As shown in Figure 4, ¢, is the shoulder yaw angle. It is
simple to find that ¢, is the supplement of the angle between
planes COD and xOy. ¢, is the shoulder pitch angle, so it is

the angle between y-axis and vector CD. @5 and @5 are the
angles of shoulder roll and elbow roll, upon considering the
origin position which is showed in Figure 3. ¢; can be seen
as the angle of planes COD and CDE. Upon using the same
method of solving ¢, @5 can be regarded as the angle between
plane CDE and plane DEH. ¢, is the angle between upper and

lower arm and it is the angle between vectors DC and DE. P
is the angle of lower arm and hand, so it is equal to the angle

between vector ED and plane EFH.
But computing ¢, the yaw angle of wrist, is challenge

N
work, but here ¢, can be viewed as the angle between X and

BN
Y., where

(10)

So now the problem becomes solving )?5) . We know that )?5)
must be in the plane of EFH; what is more )?; is perpendicular
to DE. Thus we suppose that:

X. =k, -EF+k,-EH. (11)
There are
— —_—\ —>
(k, - EF +k,-EH)-DE =0,
(12)
— —
|k1 ~EF+k2~EH‘ =1
Therefore
— —
9, = (X X7) (13)

Up to now, all of the 7 joint angles are calculated. Though
the geometry vector approach we used can meet the demand
of most cases there are still some situations where it can
not work well: for example, the plane consisting of points
ShoulderLeft, ElbowLfet, and WristLeft does not exist.

Then, two kinds of experiments have been implemented
to verify the performance of the approach. The experiment
environment is an indoor and adequate illumination envi-
ronment. Only one person stands forward to Kinect in the
distance about 2 meters. The first one is the static position
experiment shown in Figure 5. There is no doubt about
obversing that the curves of ¢, ¢,, @3, ¢4, ¢, and @, are in an
accurate and correct variation. They are smoothing and the
fluctuation is so tiny that can be ignored. But the fluctuation
of @5 is obvious. The reason is that, in this situation, the
plane CDE consisting of points ShoulderLeft, ElbowLeft, and
WristLeft is not stable because the positions captured by
Kinect of these three points are almost collinear; therefore the
normal vector of the plane will jitter in the precision scope of
the sensor. Although there are indeed some fluctuations of
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FIGURE 5: The initial positions of all joint angles. Operator stands statically in front of Kinect and keeps his upper and lower arm in a line and
horizontal just as showed in the left picture. The right picture presents the variation of 7 joint angles in successive frames.

the curves, their overall trends are correct and acceptable,
which demonstrates that the approach to get the values of
these 7 joint angles works well in static action situation.

Figures 6 and 7 are the two dynamic actions which repre-
sent the variation of the upper arm and forearm, respectively,
namely, the joint angles, ¢; and ¢s. It is evident to find
that angles ¢; and ¢; have a periodic and regular variation
with the rotation of upper and lower arm from Figures 6
and 7. These trajectories are consistent with the expectation,
indicating that our method is in good performance.

In the end, a simulation experiment was carried out to
illustrate the real time performance of our approach in real
environment. The simulation platform used in this paper is
Baxter robot model. Baxter robot has two anthropomorphic
arms that are all with 7 DOFs. The experiment flow diagram
can be seen in Figure 8. From the results of this experiment
we observed that all of these 7 angles of the robot arms
were changed smoothly along with variation of the operator’s
arm and the motions of both are similar but not identical
because of the different size of them, which shows that
the approach we proposed is feasible and effective. On the
other hand, through the coordinate transformation between
human coordinate and Baxter coordinate and the trial data,
we can get the transformation matrix T' and offset matrix B
from human coordinate system to robot coordinate. That is,

Orobot = TOtuman + B> (14)
where
[1 0 0 0 00 0]
0-10 0 000
001 0 000
T=]10 0 0-1000],
00 0 0 100
00 0 0 010
0000 00T1]

[—2.46

(15)

2.3. Discrete-Time Biomimetic Controller. In this section, a
discrete-time biomimetic controller with visual feedback is
presented for human and robot interaction. Flash and Hogan
[53] conducted several experiments aiming at mathematically
representing the kinematic part of the model. They found
that, for a movement starting and ending with zero velocity
(to and from end positions), the velocity profile of the hand
in a Cartesian coordinate system typically followed a bell
curve distribution. This velocity curve, once integrated, gives
the general kinematic representation of the trajectory of the
human hand during a typical pushing task. This relation is
given by

p (k) = Py + AP (6K° — 15k" + 10K°),
.09
0<k=:+<1,
T
where AP is the displacement performed in the trajectory, k
is the time constant, P is the initial position vector, and T is
the total time required to perform the trajectory.

Previous researches [54-56] demonstrated the capability
of impedance control to be used as a reactive model to follow
this kinematic model for human-robot collaboration (HRC).
Three impedance parameters can be applied to this model,
namely, mass, damping, and stiffness. Kosuge and Kazamura
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FIGURE 9: Scheme of HRC control model. The feedforward F,
corresponds to the force of human and F, is force feedback based
on PD impedance controller which is employed to regulate robot
joint or endpoint impedance.

[54] demonstrated experimentally that the effect of stiffness
parameters is negligible. Hence, this model can be expressed
as

Fy = mp+cp, (17)

where F is a force vector between the human and robot, m is
a virtual mass parameter, c is a virtual damping parameter,
and p, p are, respectively, the velocity and acceleration
vectors, which can be derived from (16).

The torque input to the slave arm is produced by PD
controller defined below in (18) which also employs a gravity
compensator F. Consider

F, = D,AX + K,AX + F,, (18)

where D,, K, are slave arm endpoint damping and stiffness,
respectively. The stiffness K, is set in real time according to
the estimated stiffness at endpoint of the human operator’s
limb, and Dy, is set proportional to K;, with a fixed ratio, to be
specified by the designer.

The endpoint force F, in Cartesian space needs to be
transformed to joint space by (19), in order to be implemented
on the robot arm joint torque controller. Consider

t=J'F, 19)

where 7 denotes robot joint torques; F, denotes robot end-
point force in Cartesian space; and ] represents robot arm
Jacobian. Therefore, the stiffness in joint space of the slave
robot can be derived from the stiffness in Cartesian space
according to

K =J"K,J, (20)

where K1 denotes robot joint stiffness and Kj, is human arm
endpoint stiffness. The model (shown in Figure 9) of force
and impedance enables simulation of a movement of the arm
or leg along a planned trajectory gq(k) in an environment
characterized by force and impedance. First, the torque is
computed using (19) and (18); then impedance is used to
compute the effect of the feedback control item on human-
robot interactions.
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3. Experimental Setup

The experimental platform is a dual-arm Baxter robot which
consists of a torso, 2-degree-of-freedom (2-DOF) head, dual
arms with 7 DOFs, integrated cameras, sonar, torque sensors,
encoders, and direct programming access via Robot Operat-
ing System (ROS) interface. Each joint of Baxter robot arm is
driven by 7 serial elastic actuators (SEA) with intrinsic safety.
Moreover, joint stiffness and damping can be modified under
Baxter robot torque control mode which is simplified as PD
impedance control law in this paper.

To verify the efficiency of proposed HRC method,
human-robot telemanipulation for moving objects (shown in
Figure 10) is implemented with comparative tests under two
different scenarios, that is, low stiffness mode and human
operated mode. The robot left arm serves as slave arm
which is guided by human operator’s limb endpoint. The
human left arm serves as master arm. As for the Baxter
robot simulator setup, first, Baxter simulator is launched
according to Baxter robot wiki guideline [57]. Then insert
a book shelf from gazebo environment library and 4 bricks
which are configured as shown in Figure 10. Human operator
moves Baxter left arm via visual feedback and adapts arm
pose to move the bricks to enable Baxter robot to imitate
human motor adaptive behaviours by means of UDP com-
munications between host computer and Baxter simulator. In
addition, Baxter robot initial stiffness is set with a small value
(Left_S0: 30, Left_S1: 30, Left_EO: 30, Left_EI: 20, Left WO0: 20,
Left_WI: 15, Left_W2: 10, unit: N/m-rad).

4. Results

As indicated in Section 3, the experiment is based on two
scenarios as shown in Figure 11. Baxter motion is regulated
by human operator in real time. The human operator’s arm
is simplified as 7-DOF manipulator, corresponding to Baxter
robot joints. Meanwhile, human hand posture is captured by
Kinect to control Baxter robot stiffness adaptations which
vary according to time of posture maintenance.

Test I. Human operator teleoperates Baxter robot using
Kinect which extracts human motion regulations in real time.
First, the human operator guides Baxter to the book shelf and
make a precise positioning and calibration by visual feedback.
Second, human operator employs pose 1 shown in Figure 11(a)
to move the object, but the object does not move at all.
Naturally, human operator changes his arm configuration to
pose 2 and moves the object again and still cannot move
the object. As indicated in Figure 13, Baxter robot can adapt
its stiffness using different pose as well; however, the initial
stiffness set on Baxter robot is too small to move the object
with two poses.

Test II. As shown in Figure 13(b), human operator interacts
with Baxter robot with human motion intention detection
based on Kinect. Human operator hand gesture is employed
to control Baxter robot stiffness variations as shown in
Figure 12. Generally, fist means human operator strengthens
muscles to increase force to fulfil a specific task. Thumb-up
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FIGURE 10: Experimental setup for human and Baxter robot collaboration intuitively and compliantly in teleoperation scenario. The virtual
Baxter robot environment is based on ROS and gazebo [58]. Four bricks are put on the shelf and their total weights are modified to 5kg.
Baxter robot is supposed to move the four bricks with different arm configurations.

(a) Object moving with pose 1 (b) Object moving with pose 2

FIGURE 11: Scheme of Baxter robot moving an object by two different poses. The red arrows denote the force directions of the two poses,
respectively.

e b &

Stiffness index
—_

t

FIGURE 12: Baxter robot stiffness control by human hand gestures: fist: increasing stiffness with a threshold; thumb-up: holding current
stiffness; and finger spread: decreasing stiffness.



10

Pose 1 Pose 2 End

Endpoint stiffness (N/m)
[

Endpoint displacement (m)

—_
w
T

Joint SO torque (N-m)
=)

I
I
|
I
|
I
I
|
I
I
I
I
|
I
I
I
I
I
|
I
I
I
I
I
i
I
PIUN S
I
|
I
I
I
I
I
|
I
I
I
I
I
|
I
I
I
I
I
|
I
I
I
I
I

25

t(s)

(a) Object moving test I

Discrete Dynamics in Nature and Society

Start Pose 1 Pose 2 End

g - .
& |
2 120 - !
1 1
& . :
= |
w

= 80 :
g | :
S M
=

m 40 L

Endpoint displacement (m)

45

25 +

15 +

Joint SO torque (N-m)

0 5 10 15 20 25
t(s)
(b) Object moving test I

FIGURE 13: Object moving test results: (a) object moving without human postural stiffness index transfer; (b) object moving with human
postural stiffness transfer. Both the two tests are composed of four steps: start to move Baxter robot endpoint to the target; move objects using
pose 1; and move objects with pose 2 and finally finish moving objects. The predominated Baxter robot joint SO is selected to track the torque

variations during the tests.

denotes that the Baxter robot stiffness is sufficient to complete
tasks, for example, moving objects in this test. We utilise
finger spread pose to present that Baxter robot needs to
decrease stiffness to return compliant. In this way, Baxter can
understand human motion intention simply but stably and
efficiently.

In this test, human operator replicates motion that has
been done in test I. During the first pose in moving the object,
Baxter can not complete the task, while human operator
increases Baxter stiffness via hand gesture. However, Baxter

can not make it as well. In the second pose in moving object,
human uses the same way to control Baxter motion and
stiffness as well, and Baxter can finish the task easily. When
the task is completed, human operator spreads fingers to
make Baxter robot return compliant.

5. Conclusion

In this paper, we have developed a natural interface in
discrete-time for human-robot collaboration by making
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robot understand human motion intention especially for
stiffness adaptation instead of using EMG signals which need
to be detected by adhering electrodes on the skin. In addition,
we used a geometry vector approach to extract human arm
7-DOF Jacobian for stiffness transformation from Cartesian
space to joint space in real time. A biomimetic controller is
employed for human and robot motion regulation transfer.
Experiment validated that the proposed approach to HRC
was intuitive, compliant, and efficient. It may have additional
applications in various HRC scenarios.
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