108 research outputs found

    Distributed Extended Object Tracking Using Coupled Velocity Model from WLS Perspective

    Full text link
    This study proposes a coupled velocity model (CVM) that establishes the relation between the orientation and velocity using their correlation, avoiding that the existing extended object tracking (EOT) models treat them as two independent quantities. As a result, CVM detects the mismatch between the prior dynamic model and actual motion pattern to correct the filtering gain, and simultaneously becomes a nonlinear and state-coupled model with multiplicative noise. The study considers CVM to design a feasible distributed weighted least squares (WLS) filter. The WLS criterion requires a linear state-space model containing only additive noise about the estimated state. To meet the requirement, we derive such two separate pseudo-linearized models by using the first-order Taylor series expansion. The separation is merely in form, and the estimates of interested states are embedded as parameters into each other's model, which implies that their interdependency is still preserved in the iterative operation of two linear filters. With the two models, we first propose a centralized WLS filter by converting the measurements from all nodes into a summation form. Then, a distributed consensus scheme, which directly performs an inner iteration on the priors across different nodes, is proposed to incorporate the cross-covariances between nodes. Under the consensus scheme, a distributed WLS filter over a realistic network with ``naive'' node is developed by proper weighting of the priors and measurements. Finally, the performance of proposed filters in terms of accuracy, robustness, and consistency is testified under different prior situations.Comment: Corrected Versio

    Nucleotide bias of DCL and AGO in plant anti-virus gene silencing

    Get PDF
    Plant Dicer-like (DCL) and Argonaute (AGO) are the key enzymes involved in anti-virus post-transcriptional gene silencing (AV-PTGS). Here we show that AV-PTGS exhibited nucleotide preference by calculating a relative AV-PTGS efficiency on processing viral RNA substrates. In comparison with genome sequences of dicot-infecting Turnip mosaic virus (TuMV) and monocot-infecting Cocksfoot streak virus (CSV), viral-derived small interfering RNAs (vsiRNAs) displayed positive correlations between AV-PTGS efficiency and G+C content (GC%). Further investigations on nucleotide contents revealed that the vsiRNA populations had G-biases. This finding was further supported by our analyses of previously reported vsiRNA populations in diverse plant-virus associations, and AGO associated Arabidopsis endogenous siRNA populations, indicating that plant AGOs operated with G-preference. We further propose a hypothesis that AV-PTGS imposes selection pressure(s) on the evolution of plant viruses. This hypothesis was supported when potyvirus genomes were analysed for evidence of GC elimination, suggesting that plant virus evolution to have low GC% genomes would have a unique function, which is to reduce the host AV-PTGS attack during infections

    (2E,6E)-2,6-Bis(2-fluoro-5-meth­oxy­benzyl­idene)cyclo­hexan-1-one

    Get PDF
    The title compound, C22H20F2O3, a derivative of curcumin, crystallized with two independent mol­ecules in the asymmetric unit. The mean planes of the two 2-fluoro-5-meth­oxy­phenyl groups are aligned at 24.88 (11)° in one mol­ecule and 24.19 (15)° in the other. The dihedral angles between the mean plane of the penta-1,4-dien-3-one group and those of the two 2-fluoro-5-meth­oxy­phenyl rings are 51.16 (11) and 49.16 (10)° in the first mol­ecule, and 45.69 (15) and 54.00 (14)° in the second. The mol­ecules adopt E configurations about the central olefinic bonds

    CUEING: a lightweight model to Capture hUman attEntion In driviNG

    Full text link
    Discrepancies in decision-making between Autonomous Driving Systems (ADS) and human drivers underscore the need for intuitive human gaze predictors to bridge this gap, thereby improving user trust and experience. Existing gaze datasets, despite their value, suffer from noise that hampers effective training. Furthermore, current gaze prediction models exhibit inconsistency across diverse scenarios and demand substantial computational resources, restricting their on-board deployment in autonomous vehicles. We propose a novel adaptive cleansing technique for purging noise from existing gaze datasets, coupled with a robust, lightweight convolutional self-attention gaze prediction model. Our approach not only significantly enhances model generalizability and performance by up to 12.13% but also ensures a remarkable reduction in model complexity by up to 98.2% compared to the state-of-the art, making in-vehicle deployment feasible to augment ADS decision visualization and performance

    A hybrid influence method based on information entropy to identify the key nodes

    Get PDF
    Identifying the key nodes in complicated networks is an essential topic. A number of methods have been developed in recent years to solve this issue more effectively. Multi-attribute ranking is a widely used and efficient method to increase the accuracy of identifying the key nodes. Using k-shell iteration information and propagation threshold differences, we thoroughly analyze the node’s position attribute and the propagation attribute to offer a hybrid influence method based on information entropy. The two attributes will be weighted using the information entropy weighting method, and then the nodes’ influence ranking will be calculated. Correlation experiments in nine different networks were carried out based on the Susceptible–Infected–Recovered (SIR) model. Among these, we use the imprecision function, Kendall’s correlation coefficient, and the complementary cumulative distribution function to validate the suggested method. The experimental results demonstrate that our suggested method outperforms previous node ranking methods in terms of monotonicity, relevance, and accuracy and performs well to achieve a more accurate ranking of nodes in the network

    Study on stability of underlying room and pillar old goaf in close coal seam and mining of the upper coal seam

    Get PDF
    Possible issues during mining of the upper coal seam in old goaf of nearby coal seams, including step subsidence, gas overflow in goaf, and roadway around rock fragmentation. Using the Hanjiawa Coal Mine’s upper coal seam mining, which takes place 28 m above the working face of the lower coal seam, as the research’s focal point. The paper focuses on the self-stability of the coal pillar in the old goaf, the failure form of the upper coal seam mining floor, the roof caving rule of the old goaf in the lower coal seam mining of the upper coal seam, and the bearing capacity of the interlayer rock strata using the pillar goaf stability evaluation system, field geological borehole electrical logging and borehole peeping, finite element difference numerical calculation, and other methods. The conclusion that the old goaf’s coal pillar can be completely stable and that the interlayer rock strata can bear the stress of upper coal seam mining is reached. The results show that the failure depth of the coal pillar in the lower coal seam old goaf is 1–3 m, the maximum failure depth accounting for 15% of the width of the coal pillar, and the failure depth of the roof in the old goaf is 0–3 m; After the mining of the upper coal seam, the floor above the coal pillar of the lower coal seam is plastic failure, and the failure depth is 1–10 m, and the failure depth of the roof of the old goaf of the lower coal seam is 3–15 m, which is 4 times greater than that before the mining. The maximum failure depth of the interlayer rock strata is 22 m, accounting for 78.6% of the rock strata spacing. The interlayer rock strata can bear the mining disturbance of the upper coal seam. The plastic zone of the floor of the upper coal seam is not connected with the plastic zone of the roof of the lower coal seam

    New Self-Expanding Transcatheter Valve for Off-Pump Transatrial Mitral Valve-In-Ring Implantation.

    Get PDF
    OBJECTIVES To validate a self-expanding transcatheter valve for off-pump transatrial mitral valve-in-ring (VIR) implantation via a left thoracotomy. METHODS Mitral valve annuloplasty was performed via sternotomy during cardiopulmonary bypass on 9 pigs. After successful weaning from extracorporal circulation, the custom-made, self-expanding transcatheter VIR device was deployed under fluoroscopic guidance within the annuloplasty ring via a left thoracotomy. Hemodynamic data before and after the implantation were recorded. Mitral annulus diameter and valve area were measured by echocardiography. Transvalvular and left-ventricular outflow-tract pressure gradient were measured invasively. RESULTS Eight successful implantations were performed. Implantation failed in 1 pig because of difficulty with technical delivery of the sheath. Mean transatrial procedure time was 12.6 ± 1.7 min. Hemodynamic status during transatrial implantation was stable, and differences were not statistically significant. Mean mitral annulus diameter and mean mitral orifice area were 2.32 ± 0.2 and 3.84 ± 0.55 cm2, respectively. Mild regurgitation was detected in 7 animals and moderate regurgitation in 1. Mean gradients were 6.1 ± 5.0 mm Hg across the device. Postmortem examination confirmed adequate positioning of devices within the annuloplasty ring. CONCLUSIONS This custom-made transcatheter device allows for safe and reproducible off-pump transatrial mitral VIR implantations. Transatrial access is a promising route to facilitate VIR implantations. Our custom-made stent-valve may be suitable for VIR procedures

    Biomimetic Metal-Organic Nanoparticles Prepared with a 3D-Printed Microfluidic Device as a Novel Formulation for Disulfiram-Based Therapy Against Breast Cancer

    Get PDF
    Disulfiram (DSF) is currently tested in several clinical trials for cancer treatment in combination with cop-per (Cu) ions. Usually, DSF and Cu are administered in two separate formulations. In the body, DSF andCu ions form diethyldithiocarbamate copper complex [Cu(DDC)2] which has potent antitumor activities.However, the “two formulation” approach often achieved low Cu(DDC)2 concentration at tumor regions and resulted in compromised anticancer efficacy. Therefore, preformed Cu(DDC)2 complex administered in a single formulation will have better anticancer efficacy. However, the poor aqueous solubility of Cu(DDC)2 is a significant challenge for its clinical use. In this work, a biomimetic nanoparticle formulation of Cu(DDC)2 was produced with a novel SMILE (Stabilized Metal Ion Ligand complex) method developed in our laboratory to address the drug delivery challenges. The Metal-organic Nanoparticle (MON) is composed of Cu(DDC)2 metal-organic complex core and surface decorated bovine serum albumin (BSA). Importantly, we designed a 3D-printed microfluidic device to further improve the fabrication of BSA/Cu(DDC)2 MONs. This method could precisely control the MON preparation process and also has great potential for large scale production of Cu(DDC)2 MON formulations. We also used a computational modeling approach to simulate the MON formation process in the microfluidic device. The optimized BSA/Cu(DDC)2 MONs demonstrated good physicochemical properties. The MONs also showed potent antitumor activities in the breast cancer cell monolayers as well as the 3D-cultured tumor spheroids. The BSA/Cu(DDC)2 MONs also effectively inhibited the growth of tumors in an orthotopic 4T1 breast tumor model. This current study provided a novel method to prepare a biomimetic MON formulation for DSF/Cu cancer therapy .© 2019 Elsevier Ltd. All rights reserved

    Towards Reaction Control: cis-Diastereoselective Reductive Dehydroxylation of 5-Alkyl-4-Benzyloxy-5-Hydroxy-2-Pyrrolidinones

    Get PDF
    通讯作者地址: Huang, PQA chemo-, regio-, and stereoselectively controlled reaction is highly desirable, yet challenging in organic synthesis. Diversely substituted cis and trans isomers of 2-alkyl-3-pyrrolidinols, 5-alkyl-4-hydroxy-2-pyrrolidinones, beta-hydroxy-gamma-amino acids, and their higher homologues are key structural units found in numerous drugs, drug candidates, and bioactive natural products. Previously, we established a flexible approach to trans-5-alkyl-4-benzyloxy-2-pyrrolidinones 14 and trans-6-alkyl-5-benzyloxy-2-piperidinones 15. Herein, we report a direct, flexible, moisture insensitive, and highly diastereoselective approach to the corresponding cis diastereomers 16. This stereocontrolled method is based on the MsOH-mediated (Ms=methane sulfonyl) reductive dehydroxylation of hemiaminal 12 with NaBH(OAc)(3). cis-5-Alkyl-4-benzyloxy-2-pyrrolidinones 16 are useful building blocks for the syntheses of natural products such as (+)-preussin (4) and streptopyrrolidine (5) as well as (3S,4S)-gamma-alkyl-beta-hydroxy-gamma-amino acids (6).National Basic Research Program (973 Program) of China 2010CB833200 NSF of China 20832005 21072160 Natural Science Foundation of Fujian Province 2011J0105
    corecore