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Identifying the key nodes in complicated networks is an essential topic. A number
of methods have been developed in recent years to solve this issue more
effectively. Multi-attribute ranking is a widely used and efficient method to
increase the accuracy of identifying the key nodes. Using k-shell iteration
information and propagation threshold differences, we thoroughly analyze the
node’s position attribute and the propagation attribute to offer a hybrid influence
method based on information entropy. The two attributes will be weighted using
the information entropy weighting method, and then the nodes’ influence ranking
will be calculated. Correlation experiments in nine different networks were carried
out based on the Susceptible–Infected–Recovered (SIR) model. Among these, we
use the imprecision function, Kendall’s correlation coefficient, and the
complementary cumulative distribution function to validate the suggested
method. The experimental results demonstrate that our suggested method
outperforms previous node ranking methods in terms of monotonicity,
relevance, and accuracy and performs well to achieve a more accurate ranking
of nodes in the network.
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1 Introduction

Real life is made up of many different networks, each with a small number of critical
nodes that have significant effects on the overall structure and function of the network.
Accurately identifying key nodes in a network has various applications [1–4]. For instance,
by precisely identifying influential users in social networks, information diffusion can be
accelerated [5,6]. In the transportation network, identifying key nodes can help alleviate
transportation strain, increase transportation efficiency, optimize the transportation
network layout [7], and so on [8–10].

Researchers have developed an enormous array of key nodes’ identification methods in
recent years, each of which analyzes the nodes from a different perspective. Degree centrality
(DC) takes into account a node’s neighbor information [11]. Betweenness centrality (BC)
[12] and closeness centrality (CC) [13] analyze the nodes’ path information. When ranking
the critical nodes, k-shell decomposition (KS) takes the nodes’ positions in the network into
account [14]. However, using a single benchmark approach to rank the nodes can result in
some of them receiving the same centrality values without further differentiation [15,16].

Recently, based on k-shell decomposition, a large number of researchers have developed
several approaches for further differentiation of multiple nodes in the same k-shell [17–19].
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To achieve better results, some researchers have enhanced the
standard k-shell decomposition method, and others have
integrated it with additional methods for identifying the key
nodes [20,21]. These improvements have been made by taking
into account various node attributes [22,23]. One of the current
study hotspots for many academics is the concurrent investigation
and analysis of the position attributes, neighbor attributes, or
propagation attributes of the nodes in the network. Zeng et al.
introduced a mixed-degree decomposition approach that divides the
nodes in the network into two states, removed nodes and residual
nodes, and refers to them as depletion and residual degrees,
respectively [24]. By considering a node’s neighbors, Bae and
Kim presented a novel neighborhood correlation centrality metric
that determines a node’s network spreading influence by adding up
all of the neighborhood k-shell values [25]. According to [26], this is
taken into account by calculating the shortest path between each
node and the nodes that make up the network’s core. The closer a
node is to all of these nodes, the more significant it is also thought to
be. By combining the nodes’ position attributes and path
information, Ma et al. proposed the gravity centrality (GC) [27].
The ks value of a node is regarded as the mass in the GC method.
Wang et al. suggested the k-shell iteration factor method, which
analyzes the iteration process in the k-shell decomposition [28].
Zhao et al. combined the information entropy method to consider a
node’s position attribute and neighbor attribute [29]. The position
attribute is analyzed using the k-shell decomposition, and the
number of times the node has been deleted is taken into
consideration to achieve a detailed distinction between nodes
once more. With the use of the node’s position attribute, it is
possible to determine a node’s influence by calculating its
distance from the network’s hub. Additionally, by taking the
node’s propagation attribute into account, the node’s influence
can be examined as well. The percolation theory states that when
a node in a network is deleted, the resulting residual network
generates a new propagation threshold [30,31]. We believe that
the difference in thresholds caused by node deletion can represent
the node’s impact on propagation, which has an impact on the
structural function of the network, as well as other nodes in the
network. [32] proposed a method for comprehensively considering
the network’s propagation threshold and node degree.

We propose a hybrid influence method based on information
entropy (HIE), which includes both the positional and propagation
attributes of nodes. First, using the sigmoid function, we achieve
iterative differentiation of nodes within the same shell following k-
shell decomposition. The propagation property of the nodes is then
analyzed, and the absolute value of the threshold difference after
node deletion is computed. Finally, using the information entropy
weighting method, the two attributes are weighted and assessed. In
nine different networks, we implemented relevant experiments
based on the Susceptible–Infected–Recovered (SIR) model
[33,34]. The complementary cumulative distribution function,
Kendall’s coefficient [35], and the imprecision function were used
in the experiments. The experimental results show that our method
outperforms other comparison methods for a variety of assessment
criteria, which may greatly enhance the identification of key nodes
and result in more accurate node differentiation.

The rest of the paper is divided into the following sections. The
proposed method is fully explained in Section 2. The experimental

results are examined in Section 3. Section 4 includes both
discussions and conclusions.

2 Model

Using the notation G = (N, E), it is defined that a network G,
which is unweighted and undirected, consists of N nodes and E
edges. The adjacency matrix of G is A = {aij}; aij = 1 denotes the
direct connection between nodes i and j; otherwise, aij = 0.

The k-shell decomposition offers extremely valuable node
positioning information. There are more iterations for nodes that
are closer to the center and fewer iterations for nodes that are farther
from the center in the same shell layer. Numerous articles have also
examined this [29,36]. The nodes in the same k-shell can be ranked
by the relevance of the number of times they have been removed,
which reflects the characteristics of the node position attribute, in
order to further differentiate the removed nodes in that layer. In this
research, “positional iteration” means counting the times in which
the iterative deletion process deletes every node in one k-shell.
Inspired by [29], we utilize the sigmoid function to determine
how many times the iterative process will occur using the
specified node position metric pmi,

pmi � 3
4
· 1

1 + e−
����
Iter i( )

√ . (1)

The position indication pmi increases as the number of iterations
(Iter(i)) increases. Here, Iter(i) takes a value range of (0, +∞), and
the critical value of pmi is 0.75.

A node’s positional attributes are represented by PAi, which is
made up of two parts: the node’s ks value and the pmi value,

PAi � ksi + pmi, (2)
where ksi denotes the k-shell value of node i and pmi denotes the
position indicator calculated when node i is iteratively eliminated by
the shell in which it is located. Next, we will utilize a basic network
with 18 nodes and 23 edges to further our illustration. In Figure 1,
nodes 5 and 6 have identical ks values of 2. Node 5 is more crucial
than node 6 because when all nodes are eliminated iteratively with

FIGURE 1
Small schematic network.
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ks = 2, node 5 is deleted for the third time, while node 6 is deleted for
the second time. The pmi value for each node in Figure 1 is shown in
Table 1. The first column of the table lists the ks values for each node,
and the second column lists the nodes that are deleted during each
iteration of k-shell decomposition. The iteration order stands for the
number of times a node has been deleted within the same k-shell
layer or with the same ks value. From the table, we can learn that
pm5 = 0.637256 and pm6 = 0.603322, so PA5 = ks5 + pm5 = 2 +
0.637256 = 2.637256 and PA6 = ks6 +pm6 = 2 + 0.603322 = 2.603322.

We take the network’s propagation threshold δ into
consideration when analyzing the nodes’ propagation
characteristics. The leading eigenvalue λ(M) of the non-
backtracking matrix of an unweighted, undirected network G can
be used to determine the network’s propagation threshold,

δ � 1
λ M( ), (3)

where λ(M) can be expressed as follows:

λ M( ) � 1
2E

∑
ij

aij ki − 1( ) kj − 1( ), (4)

where ki denotes the degree value of node i, ki = ∑j∈G aij.
In Eq. 3, removing a node from the network causes the

network’s overall structure and the corresponding δ value of
the remaining network to alter. At this point, there is a difference
from the δ value derived from the original network, which is
known as the threshold difference Δδi. In this research, we
consider the absolute value of the threshold difference
obtained after node deletion.

PBi � |Δδi| � |δi − δ|, (5)
where δi denotes the propagation threshold calculated for the
remaining network. PBi stands for the threshold difference’s
absolute value.

When we take into account the node’s position attribute and the
propagation attribute in a thorough manner, we will apply the
method of information entropy weighting for the two separate
attribute features in order to get a more accurate identification of
key nodes.

PABi � w1 · PAi + w2 · PBi, (6)
where w1 and w2 stand for the weights of the node’s position
attribute and propagation attribute, respectively. PABi stands for

the combined influence of the node generated by combining the two
attributes.

Finally, we propose a hybrid influence method based on
information entropy (HIE) in conjunction with taking a node’s
first-order neighbors into account.

HIEi � ∑
j∈ψ i( )

PABj. (7)

Using the information entropy weighting method, thew1 and w2

values, corresponding to the two qualities, are determined
independently. To start, the entropy value for each attribute, IEi,
is figured out

IEi � − 1
lnN

·∑
N

j�1
rij ln rij, i � 1, 2. (8)

In this case, two attributes are involved; therefore, i = 1, 2 is set.
IEi signifies the entropy value of the ith attribute. The rij denotes the
normalized value of the ith attribute of the jth node. The positioning
attribute is indicated if i = 1, and the propagation attribute is
indicated if i = 2, where the following equation is used to
compute rij,

r1j � PAj

∑N
j�1PAj

; (9)

r2j � PBj

∑N
j�1PBj

. (10)

After that, the weights of the two attributes wi are calculated by

wi � 1 − IEi

2 −∑iIEi
, i � 1, 2. (11)

We use the HIE method to identify the nodes in Figure 1 and
assess their relative significance within the network. As shown in
Table 2, there has been a notable improvement in node
differentiation when compared to the k-shell decomposition. In
Table 2, the first row shows the rankings, and the second row lists the
node numbers for the nodes that are located in the various ranked
nodes. According to Table 2, the HIE approach can be used to
differentiate nodes with the same ks value. For instance, the ks values
of nodes 1, 2, 3, and 4 are all 3, but they are distributed around the
network in different places. As a result of using the HIE method,
node 2 is determined to be the most crucial node in the ranking.
Furthermore, it can be seen that nodes 1 and 5 have ks values of
3 and 2, respectively, but they are ranked 3 and 4 in Table 2. Node
5 is more influential than node 1 in the network, and because it has
more connecting edges, it tends to play a more important role in the
network when it conducts the dissemination of information.

3 Results

3.1 Data description

Nine different-sized networks were chosen for this experiment.
The accuracy of the suggested method will be verified by analyzing
and comparing the various methods using these networks. The three
Chinese carriers’ route networks include CA, CZ, andMU: CA is the

TABLE 1 Values of pmi taken during the detailed iteration of the k-shell
decomposition.

ks Deleted nodes Iteration order pmi

1 10, 12, 13, 14, 15, 16, 17, and 18 1 0.548294

1 7 and 11 2 0.603322

2 9 1 0.548294

2 6 2 0.603322

2 5 and 8 3 0.637256

3 1, 2, 3, and 4 1 0.548294
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Air China route network, CZ is the China Southern Airlines route
network, and MU is the China Eastern Airlines route network. An
airline network of American (USAir) is given in [37]. A network of
links for communication (Polblogs) is given in [32]. An email
communication network of URV’s (Email) is given in [26]. The
Routers is a technological network, where nodes denote individual
routers and edges between nodes represent connections between
different routers. The Soc-hamsterster and Facebook are both social
networks [38]. Some of the topological characteristics of the nine
networks are listed in Table 3.

3.2 Measurement

To describe each node’s influence, we will use the SIR model’s
node propagation range [34]. Three variables need to be established
before the experiment: the propagation rate β, the recovery rate μ,
and the infection step t. In this experiment, we will consider that
each network’s node propagation rate ranges between 0.1 and 0.19,
its recovery rate is 1, and its time step is 10. According to the SIR
model, each node in a network can only be in one of the three states:
susceptible, infected, or recovered. The susceptible neighbor of each
infected node will randomly get infected with a specified probability
at each time step of the SIR model. The infected node can then be
recovered. The entire transmission process comes to an end when
new infected nodes cease to appear in the network. To get an average
result, the experiment is conducted 5,000 times. As it infects more
nodes via the SIR propagation process, a node cultivates influence
and importance inside the network.

Kendall’s tau coefficient is used to assess the correlation between
two sequences [35]. Kendall’s tau τ has a value between −1 and 1. If
the estimated value is closer to 1, there is a greater relationship

between the two sequences. Kendall’s tau correlation coefficient is
defined as follows:

τ � 2
N N − 1( ) ∑i<j

sgn vi − vj( ) wi − wj( )[ ]. (12)

Suppose that the length and element count of two sequences, V
and W, are the same. In the two sequences, vi and wi, respectively,
represent the ith values. There are three relationships between (vi,wi)
and (vj, wj). The first relationship is concordant if (vi > vj, wi > wj),
or (vi < vj, wi < wj). The second is discordant when (vi > vj, wi <
wj), or (vi < vj, wi > wj), and the third is (vi = vj, wi = wj), denoting
neither concordance nor discordance.

In this paper, Kendall’s tau τ can be utilized to examine the
relationship between the SIR model and the ranking lists generated
by various node ranking methods. The ranking method is more
effective if the acquired value is closer to 1.

By comparing the average influence of the top-ranked nodes
acquired from SIR simulations and other methods, it is possible to
further evaluate the accuracy of the various ranking methods. The
imprecise function ε(p) can be used to accomplish the
aforementioned target, and it is defined as follows:

ε p( ) � 1 − M p( )
Msir p( )

, (13)

where p is the proportion of the chosen top-ranked nodes. In
addition, p has a value between 0 and 1. When the fraction of
options is p, M(p) and Msir(p) represent, respectively, the average
spreading influence size of the top-ranked set of nodes acquired
from various node ranking methods and SIR simulations. The
accuracy of that node ranking method increases with decreasing
ε(p) values.

3.3 Simulation results

We evaluate the HIE method with four other node ranking
methods in order to verify the efficacy and accuracy of the HIE. The
four comparison methods we used are KS (k-shell decomposition)
[14], Cnc+ (extended neighborhood coreness centrality measure)
[25], KSIF (k-shell iteration factor method) [28], and PN (an
improved multi-attribute k-shell method) [29].

To demonstrate the distribution of node rankings produced by
each method in different networks, we used the complementary
cumulative distribution function (CCDF) to execute the calculations
and depict the relevant graphs. When using different node
identification methods, it is beneficial if each node can be
classified according to a separate ranking, which allows for the
difference in node importance. Because of this, a node identification
method performs better. The more precisely it ranks nodes, the
fewer nodes there are in the same ranking, and the slower its CCDF
curve decrements.

TABLE 2 Ranking distributions of nodes obtained by computing small schematic networks using the HIE method.

Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Nodes 2 3 and 4 5 1 8 6 9 7 11 15 and 18 12 10 13,14, and 16 17

TABLE 3 Basic topology information of nine networks. The network’s total
number of nodes, connected edges, and average degree are each represented
by N, E, and 〈k〉, respectively. βth, r, and C are epidemic threshold, assortative
coefficient, and clustering coefficient, respectively.

Network N E 〈k〉 βth r C

CA 237 855 7.2 0.026 -0.356 0.447

CZ 281 1,138 8.1 0.025 -0.367 0.380

MU 293 1,247 8.4 0.025 -0.361 0.435

USAir 332 2,126 12.8 0.023 -0.208 0.625

Polblogs 643 2,280 7.09 0.041 -0.217 0.232

Email 1,133 5,451 9.62 0.057 0.078 0.22

Routers 2,113 6,632 6.28 0.048 0.019 0.246

Soc-hamsterster 2,426 16,630 13.71 0.024 0.047 0.537

Facebook 4,039 88,234 43.69 0.009 0.063 0.606
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In nine networks, the CCDF images generated using various
methods are displayed in Figure 2. As shown in Figure 2, the CCDF
pictures acquired using the k-shell decomposition exhibit a quicker
decrease in each of the nine networks. The HIE method degrades
more slowly than several other methods in the CZ, MU, Polblogs,
and Routers networks. The other numerous methods, with the
exception of the KS method, have a close ranking situation when
the value of CCDF is close to 0 in the CA, CZ, MU, USAir, Soc-
hamsterster, and Facebook networks. In contrast, the method Cnc +
performs less well than the KSIF, PN, and HIE in the Polblogs,
Email, and Routers networks.

To evaluate the relevance of the various methods, we use Kendall’s
coefficient. We selected the SIR propagation rate β in this experiment
to be between 0.1 and 0.19. The results were based on an average of
100 separate experiments. Figure 3 displays the simulation results. The
corresponding τ value almost always ranks first in the MU and USAir
networks, demonstrating the excellent performance of the HIE

method. The propagation rate in the CA and CZ networks begins
at 0.11, and Kendall’s tau value determined by HIE is always the best.
In the Soc-hamsterster networks, a similar situation is present. In the
early phases of the Email and Routers networks, our method does not
perform as well as the PN, Cnc+, and KSIF methods, but as the
propagation rate increases in both networks, the HIE method
gradually outperforms the other methods and achieves good
performance. When the propagation rate is between 0.1 and
0.13 in the Polblogs and Facebook networks, Kendall’s tau
coefficients produced using the HIE approach are lower than those
obtained by the PN method. The HIE method yields a larger value of
Kendall’s tau when the propagation rate is greater than 0.14,
illustrating the increased validity and accuracy of HIE. The KSIF
and PN both take a thorough look at k-shell decomposition, but they
fail to include an extensive discussion of the nodes’ propagation
attribute aspects. As a result, when calculating Kendall’s coefficients in
some networks, the HIE outperforms the other two methods.

FIGURE 2
CCDF plots of nine actual networks. The horizontal axis displays the rankings produced by the method used to identify network nodes, while the
vertical axis displays the CCDF values corresponding to the various rankings.
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Using the imprecision function for experimental validation, we
will further verify the HIE method’s accuracy. The imprecision
function predicts that if a key node identification method
determines the node ranking more precisely, the value of the
imprecision function provided by the method will be lower and
nearer to 0. To get the corresponding value of the imprecision
function, we shall rank the four comparison approaches and the
HIE method in nine different networks. The range of p-values was
set at 0.1 to 0.3 in our research, which compared the nodes in the
top 10% to 30% of the various rankings. In addition, we set β =
0.15 and μ = 1 in this experiment. Our experiment results are
shown in Figure 4. With the exception of the Facebook network,
our method works well on the other eight networks. In the CA, CZ,
MU, and Router networks, the KSIF method performs the worst.
When the p-value is between 0.1 and 0.2, the KSIF performs better
than the KS in the USAir and Polblogs networks. The KS method
performs better when the p-value is greater than 0.2. The KS
method does not perform well in the Email networks. In

conclusion, the HIE method performs better overall than other
methods, while the KSIF and KS methods perform rather poorly.
As a result, the experimental data analysis discussed previously
demonstrates that the HIE method has efficacy and accuracy in
terms of node ranking accuracy.

4 Discussions and conclusion

We propose a hybrid influence method based on information
entropy, and our method takes into account both node position
attributes and propagation attributes. First, the number of iterations is
utilized to distinguish nodeswith the same ks value. The positionmetric is
obtained using the value of the sigmoid function. The influence of the
node on the network structure is then determined by calculating the
difference in the propagation threshold between the network before and
after node deletion. This yields the node’s propagation attribute. Then, the
two properties are combined, and the information entropy weighting

FIGURE 3
The Kendall’s tau τ is calculated in the nine networks using five distinct methods. The propagation rates β vary between 0.1 and 0.19 in all of the
different networks.
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method is utilized to quantify the influence of each node in the network
under this complete analysis. To determine the nodes’ ultimate influence
ranking, the first-order neighbors of the nodes are taken into account and
examined.

We conducted a series of related validation experiments to confirm
the validity and accuracy of our suggested method. Using the
complementary cumulative distribution function, we first assess the
efficiency of the suggested method for achieving node differentiation.
The experimental findings demonstrate the effectiveness of the HIE
method in achieving a more precise node distinction. Then, to confirm
the applicability and precision of the suggested method, we employed
Kendall’s correlation coefficient and the imprecision function.
According to the results of both experiments, the HIE method
performs better overall and produces a higher Kendall’s coefficient
and lower imprecision function values than a number of other
comparable methods. The structure of complex networks is
continuously evolving, and in the future, we are going to keep

investigating the current method in order to adapt it to multilayer
networks or temporal networks by enhancing it.
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