102 research outputs found

    Large Chinese land carbon sink estimated from atmospheric carbon dioxide data

    Get PDF
    Limiting the rise in global mean temperatures relies on reducing carbon dioxide (CO2) emissions and on the removal of CO2 by land carbon sinks. China is currently the single largest emitter of CO2, responsible for approximately 27 per cent (2.67 petagrams of carbon per year) of global fossil fuel emissions in 20171. Understanding of Chinese land biosphere fluxes has been hampered by sparse data coverage2–4, which has resulted in a wide range of a posteriori estimates of flux. Here we present recently available data on the atmospheric mole fraction of CO2, measured from six sites across China during 2009 to 2016. Using these data, we estimate a mean Chinese land biosphere sink of −1.11 ± 0.38 petagrams of carbon per year during 2010 to 2016, equivalent to about 45 per cent of our estimate of annual Chinese anthropogenic emissions over that period. Our estimate reflects a previously underestimated land carbon sink over southwest China (Yunnan, Guizhou and Guangxi provinces) throughout the year, and over northeast China (especially Heilongjiang and Jilin provinces) during summer months. These provinces have established a pattern of rapid afforestation of progressively larger regions5,6, with provincial forest areas increasing by between 0.04 million and 0.44 million hectares per year over the past 10 to 15 years. These large-scale changes reflect the expansion of fast-growing plantation forests that contribute to timber exports and the domestic production of paper7. Space-borne observations of vegetation greenness show a large increase with time over this study period, supporting the timing and increase in the land carbon sink over these afforestation regions

    From Transistors to Phototransistors by Tailoring the Polymer Stacking

    Get PDF
    It is universally acknowledged that highly photosensitive transistors are strongly dependent on the high carrier mobility of polymer-based semiconductors. However, the polymer π–π stacking and aggregation, required to increase the charge mobility, conversely inhibit the dissociation of photogenerated charge carriers, in turn accelerating the geminate recombination of electron-hole pairs. To explore the effects of charge mobility and polymer stacking on the photoresponsivity of the phototransistors, here, two alternating copolymers are synthesized, namely P-PPAB-IDT and P-PPAB-BDT, by palladium-catalyzed Stille coupling of PPAB with indaceodithiophene (IDT) or benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl) (BDT) monomers. The polymer P-PPAB-IDT demonstrates a nearly 20 times enhancement in the hole mobility compared to P-PPAB-BDT. Yet, P-PPAB-IDT surprisingly shows no response to white light illumination, whereas P-PPAB-BDT exhibits a significant photoresponse to the same light source with a high light-current/dark-current (Ilight/Idark) ratio of 21.6 in the p-type area and a low current ratio of just 5.2 in the n-type area. It is believed that this work will provide an effective strategy to develop highly photosensitive polymer semiconductors by reducing polymer stacking and aggregation rather than improving the charge carrier mobility.acceptedVersionPeer reviewe

    Global Carbon Budget 2023

    Get PDF
    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land-use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) is estimated with global ocean biogeochemistry models and observation-based f CO2 products. The terrestrial CO2 sink (SLAND) is estimated with dynamic global vegetation models. Additional lines of evidence on land and ocean sinks are provided by atmospheric inversions, atmospheric oxygen measurements, and Earth system models. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and incomplete understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the year 2022, EFOS increased by 0.9 % relative to 2021, with fossil emissions at 9.9 ± 0.5 Gt C yr−1 (10.2 ± 0.5 Gt C yr−1 when the cement carbonation sink is not included), and ELUC was 1.2 ± 0.7 Gt C yr−1, for a total anthropogenic CO2 emission (including the cement carbonation sink) of 11.1 ± 0.8 Gt C yr−1 (40.7±3.2 Gt CO2 yr−1). Also, for 2022, GATM was 4.6±0.2 Gt C yr−1 (2.18±0.1 ppm yr−1; ppm denotes parts per million), SOCEAN was 2.8 ± 0.4 Gt C yr−1, and SLAND was 3.8 ± 0.8 Gt C yr−1, with a BIM of −0.1 Gt C yr−1 (i.e. total estimated sources marginally too low or sinks marginally too high). The global atmospheric CO2 concentration averaged over 2022 reached 417.1 ± 0.1 ppm. Preliminary data for 2023 suggest an increase in EFOS relative to 2022 of +1.1 % (0.0 % to 2.1 %) globally and atmospheric CO2 concentration reaching 419.3 ppm, 51 % above the pre-industrial level (around 278 ppm in 1750). Overall, the mean of and trend in the components of the global carbon budget are consistently estimated over the period 1959–2022, with a near-zero overall budget imbalance, although discrepancies of up to around 1 Gt C yr−1 persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows the following: (1) a persistent large uncertainty in the estimate of land-use changes emissions, (2) a low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living-data update documents changes in methods and data sets applied to this most recent global carbon budget as well as evolving community understanding of the global carbon cycle. The data presented in this work are available at https://doi.org/10.18160/GCP-2023 (Friedlingstein et al., 2023)

    Performance Analysis of Surface Reconstruction Algorithms in Vertical Scanning Interferometry Based on Coherence Envelope Detection

    No full text
    Optical interferometry plays an important role in the topographical surface measurement and characterization in precision/ultra-precision manufacturing. An appropriate surface reconstruction algorithm is essential in obtaining accurate topography information from the digitized interferograms. However, the performance of a surface reconstruction algorithm in interferometric measurements is influenced by environmental disturbances and system noise. This paper presents a comparative analysis of three algorithms commonly used for coherence envelope detection in vertical scanning interferometry, including the centroid method, fast Fourier transform (FFT), and Hilbert transform (HT). Numerical analysis and experimental studies were carried out to evaluate the performance of different envelope detection algorithms in terms of measurement accuracy, speed, and noise resistance. Step height standards were measured using a developed interferometer and the step profiles were reconstructed by different algorithms. The results show that the centroid method has a higher measurement speed than the FFT and HT methods, but it can only provide acceptable measurement accuracy at a low noise level. The FFT and HT methods outperform the centroid method in terms of noise immunity and measurement accuracy. Even if the FFT and HT methods provide similar measurement accuracy, the HT method has a superior measurement speed compared to the FFT method

    Performance Analysis of Surface Reconstruction Algorithms in Vertical Scanning Interferometry Based on Coherence Envelope Detection

    No full text
    Optical interferometry plays an important role in the topographical surface measurement and characterization in precision/ultra-precision manufacturing. An appropriate surface reconstruction algorithm is essential in obtaining accurate topography information from the digitized interferograms. However, the performance of a surface reconstruction algorithm in interferometric measurements is influenced by environmental disturbances and system noise. This paper presents a comparative analysis of three algorithms commonly used for coherence envelope detection in vertical scanning interferometry, including the centroid method, fast Fourier transform (FFT), and Hilbert transform (HT). Numerical analysis and experimental studies were carried out to evaluate the performance of different envelope detection algorithms in terms of measurement accuracy, speed, and noise resistance. Step height standards were measured using a developed interferometer and the step profiles were reconstructed by different algorithms. The results show that the centroid method has a higher measurement speed than the FFT and HT methods, but it can only provide acceptable measurement accuracy at a low noise level. The FFT and HT methods outperform the centroid method in terms of noise immunity and measurement accuracy. Even if the FFT and HT methods provide similar measurement accuracy, the HT method has a superior measurement speed compared to the FFT method

    Experimental and Numerical Studies on Crack Initiation and Coalescence in Sandy Mudstone with Prefabricated Cross-Flaws Under Uniaxial Compression

    No full text
    The purpose of this paper is to study the crack initiation, propagation, and coalescence of the sandy mudstone sample with two sets of prefabricated cross-flaws under uniaxial compression. This study is different from previous studies on single or multiple parallel prefabricated flaws. The prefabricated cross-flaws are characterized by the dip of the rock bridge with the direction of the main flaw (β) and the angle between the direction of main and minor flaws (γ). The effects of these two parameters on crack initiation, propagation, coalescence, crack initiation stress, and coalescence stress are analyzed. Moreover, numerical simulation of the uniaxial compression experiments is performed using PFC2D with a flat-joint model, and the simulation results are in good agreement with those from the experiments. The results demonstrate that the dip angle of the rock bridge with the direction of the main flaw (β) has strong effects on the crack initiation and coalescence stresses. The larger the angle between the direction of main and minor flaws γ, the greater the crack initiation and coalescence stresses. The crack initiation stress is reduced for the case with cross-flaws compared with that with non-cross-flaws. Meanwhile, the connection type of main flaws and the width of the crack coalescence zone are difficult to observe through the experiments and are discovered from the numerical simulation

    Efficacy and Safety of Ketamine Versus Opiates in the Treatment of Patients with Renal Colic: A Systematic Review and Meta-analysis

    No full text
    Abstract Introduction Renal colic is one of the most common urological emergencies, and is usually caused by ureteral colic spasms. Pain management in renal colic remains the central focus of emergency treatment. The purpose of this meta-analysis is to identify the efficacy and safety of ketamine versus opioids in the treatment of patients with renal colic. Methods We searched PubMed, EMBASE, Cochrane Library, and Web of Science databases for published randomized controlled trials (RCTs) that referred to the use of ketamine and opioids for patients with renal colic. The methodology was based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The mean difference (MD) or odds ratio (OR) with a 95% confidence interval (CI) was used to analyze the data. The results were pooled using a fixed-effects model or random-effects model. The primary outcome measure was patient-reported pain scores 5, 15, 30, and 60 min after drug administration. The secondary outcome measure was side effects. Results The data analysis revealed that ketamine was similar to opioids in pain intensity at the time of 5 min post-dose (MD = − 0.40, 95% CI − 1.82 to 1.01, P = 0.57), 15 min post-dose (MD = − 0.15, 95% CI − 0.82 to 0.52, P = 0.67), 30 min post-dose (MD = 0.38, 95% CI − 0.25 to 1.01, P = 0.24). Also, the pain score of ketamine was better than that of opioids at 60 min after administration (MD = − 0.12, 95% CI − 0.22 to − 0.02, P = 0.02). As for safety, the ketamine group was linked to a significant decrease in the incidence of hypotensive (OR = 0.08, 95% CI 0.01–0.65, P = 0.02). The two groups did not statistically differ in the incidence of nausea, vomiting, and dizziness. Conclusions Compared with opioids, ketamine showed a longer duration of analgesia in renal colic, with satisfactory safety. Trial Registration The PROSPERO registration number is CRD42022355246

    Study on Efficient Utilization Technology of Coal Pillar Based on Gob-Side Entry Driving in a Coal Mine with Great Depth and High Production

    No full text
    Improving the utilization of non-renewable resources takes a crucial position in circular economy. Gob-side entry driving technology has been widely applied in coal mines in China, such as in the Shilawusu mine (Ordos City, Inner Mongolia), here considered as a case study due to its high safety and resource-recovery rate. However, at present the complexity of coal pillar utilization makes it hard to fully master the key technology for coal pillar size design, which leads to huge waste of coal resources. Based on theoretical calculation and numerical simulation, this study analyzed the basic mechanical structure of coal pillar and the characteristics of its weakening failure, providing theoretical reference for efficient recovery of coal resources. In general, results of this study can be helpful in pursuing the efficient, hence sustainable, development of mines with Gob-side entry driving technology

    Decoding Visual Motions from EEG Using Attention-Based RNN

    No full text
    The main objective of this paper is to use deep neural networks to decode the electroencephalography (EEG) signals evoked when individuals perceive four types of motion stimuli (contraction, expansion, rotation, and translation). Methods for single-trial and multi-trial EEG classification are both investigated in this study. Attention mechanisms and a variant of recurrent neural networks (RNNs) are incorporated as the decoding model. Attention mechanisms emphasize task-related responses and reduce redundant information of EEG, whereas RNN learns feature representations for classification from the processed EEG data. To promote generalization of the decoding model, a novel online data augmentation method that randomly averages EEG sequences to generate artificial signals is proposed for single-trial EEG. For our dataset, the data augmentation method improves the accuracy of our model (based on RNN) and two benchmark models (based on convolutional neural networks) by 5.60%, 3.92%, and 3.02%, respectively. The attention-based RNN reaches mean accuracies of 67.18% for single-trial EEG decoding with data augmentation. When performing multi-trial EEG classification, the amount of training data decreases linearly after averaging, which may result in poor generalization. To address this deficiency, we devised three schemes to randomly combine data for network training. Accordingly, the results indicate that the proposed strategies effectively prevent overfitting and improve the correct classification rate compared with averaging EEG fixedly (by up to 19.20%). The highest accuracy of the three strategies for multi-trial EEG classification achieves 82.92%. The decoding performance for the methods proposed in this work indicates they have application potential in the brain–computer interface (BCI) system based on visual motion perception
    • …
    corecore