30 research outputs found

    Spatial ecology of a range-expanding bumble bee pollinator

    Get PDF
    Molecular methods have greatly increased our understanding of the previously cryptic spatial ecology of bumble bees (Bombus spp.), with knowledge of the spatial ecology of these bees being central to conserving their essential pollination services. Bombus hypnorum, the Tree Bumble Bee, is unusual in that it has recently rapidly expanded its range, having colonized much of the UK mainland since 2001. However, the spatial ecology of B. hypnorum has not previously been investigated. To address this issue, and to investigate whether specific features of the spatial ecology of B. hypnorum are associated with its rapid range expansion, we used 14 microsatellite markers to estimate worker foraging distance, nest density, between‐year lineage survival rate and isolation by distance in a representative UK B. hypnorum population. After assigning workers to colonies based on full or half sibship, we estimated the mean colony‐specific worker foraging distance as 103.6 m, considerably less than values reported from most other bumble bee populations. Estimated nest density was notably high (2.56 and 0.72 colonies ha−1 in 2014 and 2015, respectively), estimated between‐year lineage survival rate was 0.07, and there was no evidence of fine‐scale isolation by distance. In addition, genotyping stored sperm dissected from sampled queens confirmed polyandry in this population (mean minimum mating frequency of 1.7 males per queen). Overall, our findings establish critical spatial ecological parameters and the mating system of this unusual bumble bee population and suggest that short worker foraging distances and high nest densities are associated with its rapid range expansion

    No severe genetic bottleneck in a rapidly range-expanding bumblebee pollinator

    Get PDF
    Genetic bottlenecks can limit the success of populations colonizing new ranges. However, successful colonizations can occur despite bottlenecks, a phenomenon known as the genetic paradox of invasion. Eusocial Hymenoptera such as bumblebees (Bombus spp.) should be particularly vulnerable to genetic bottlenecks, since homozygosity at the sex-determining locus leads to costly diploid male production (DMP). The Tree Bumblebee (Bombus hypnorum) has rapidly colonized the UK since 2001 and has been highlighted as exemplifying the genetic paradox of invasion. Using microsatellite genotyping, combined with the first genetic estimates of DMP in UK B. hypnorum, we tested two alternative genetic hypotheses ('bottleneck' and 'gene flow' hypotheses) for B. hypnorum's colonization of the UK. We found that the UK population has not undergone a recent severe genetic bottleneck and exhibits levels of genetic diversity falling between those of widespread and range-restricted Bombus species. Diploid males occurred in 15.4% of reared colonies, leading to an estimate of 21.5 alleles at the sex-determining locus. Overall, the findings show that this population is not bottlenecked, instead suggesting that it is experiencing continued gene flow from the continental European source population with only moderate loss of genetic diversity, and does not exemplify the genetic paradox of invasion

    Habitat and forage associations of a naturally colonising insect pollinator, the Tree Bumblebee Bombus hypnorum

    Get PDF
    Bumblebees (Bombus species) are major pollinators of commercial crops and wildflowers but factors affecting their abundance, including causes of recent population declines, remain unclear. Investigating the ecology of species with expanding ranges provides a potentially powerful means of elucidating these factors. Such species may also bring novel pollination services to their new ranges. We therefore investigated landscape-scale habitat use and foraging preferences of the Tree Bumblebee, B. hypnorum, a recent natural colonist that has rapidly expanded its range in the UK over the past decade. Counts of B. hypnorum and six other Bombus species were made in March-June 2012 within a mixed landscape in south-eastern Norfolk, UK. The extent of different landscape elements around each transect was quantified at three scales (250 m, 500 m and 1500 m). We then identified the landscape elements that best predicted the density of B. hypnorum and other Bombus species. At the best fitting scale (250 m), B. hypnorum density was significantly positively associated with extent of both urban and woodland cover and significantly negatively associated with extent of oilseed rape cover. This combination of landscape predictors was unique to B. hypnorum. Urban and woodland cover were associated with B. hypnorum density at three and two, respectively, of the three scales studied. Relative to other Bombus species, B. hypnorum exhibited a significantly higher foraging preference for two flowering trees, Crataegus monogyna and Prunus spinosa, and significantly lower preferences for Brassica napus, Glechoma hederacea and Lamium album. Our study provides novel, quantitative support for an association of B. hypnorum with urban and woodland landscape elements. Range expansion in B. hypnorum appears to depend, on exploitation of widespread habitats underutilised by native Bombus species, suggesting B. hypnorum will readily co-exist with these species. These findings suggest that management could target bumblebee species with distinctive habitat requirements to help maintain pollination service

    The Cool Farm Biodiversity metric: an evidence-based online tool to report and improve management of biodiversity at farm scale

    Get PDF
    Halting biodiversity loss and achieving food security are both aims of the United Nations 2030 Agenda for Sustainable Development, but there is complex interplay between them. Agriculture drives biodiversity loss, but biodiversity provides benefits to agriculture. There is substantial potential to develop ‘win-win’ solutions for biodiversity and people within productive farmland, by boosting wildlife that can be supported, whilst maintaining yield and other services. To achieve this, farmers need to be able to assess the impacts of their management on biodiversity at farm scale. While suitable tools exist to drive improvement in biodiversity management, none incorporates evidence on the effectiveness of specific management practices. In this study we present the Cool Farm Biodiversity metric, which generates a farm-scale action-based biodiversity management assessment, scored using expert judgements and expert assessment of experimental evidence. The metric is designed to be biome-specific, so it responds to conservation aims, ecosystem processes and farming systems in particular biomes. To demonstrate that the metric is responsive to changes in farm management, we present an example of use on a large arable farm from the temperate forest biome

    The Cool Farm Biodiversity metric: An evidence-based online tool to report and improve management of biodiversity at farm scale

    Get PDF
    Halting biodiversity loss and achieving food security are both aims of the United Nations 2030 Agenda for Sustainable Development, but there is complex interplay between them. Agriculture drives biodiversity loss, but biodiversity provides benefits to agriculture. There is substantial potential to develop ‘win-win’ solutions for biodiversity and people within productive farmland, by boosting wildlife that can be supported, whilst maintaining yield and other services. To achieve this, farmers need to be able to assess the impacts of their management on biodiversity at farm scale. While suitable tools exist to drive improvement in biodiversity management, none incorporates evidence on the effectiveness of specific management practices. In this study we present the Cool Farm Biodiversity metric, which generates a farm-scale action-based biodiversity management assessment, scored using expert judgements and expert assessment of experimental evidence. The metric is designed to be biome-specific, so it responds to conservation aims, ecosystem processes and farming systems in particular biomes. To demonstrate that the metric is responsive to changes in farm management, we present an example of use on a large arable farm from the temperate forest biome

    Three-Dimensional Imaging of Drosophila melanogaster

    Get PDF
    The major hindrance to imaging the intact adult Drosophila is that the dark exoskeleton makes it impossible to image through the cuticle. We have overcome this obstacle and describe a method whereby the internal organs of adult Drosophila can be imaged in 3D by bleaching and clearing the adult and then imaging using a technique called optical projection tomography (OPT). The data is displayed as 2D optical sections and also in 3D to provide detail on the shape and structure of the adult anatomy.We have used OPT to visualize in 2D and 3D the detailed internal anatomy of the intact adult Drosophila. In addition this clearing method used for OPT was tested for imaging with confocal microscopy. Using OPT we have visualized the size and shape of neurodegenerative vacuoles from within the head capsule of flies that suffer from age-related neurodegeneration due to a lack of ADAR mediated RNA-editing. In addition we have visualized tau-lacZ expression in 2D and 3D. This shows that the wholemount adult can be stained without any manipulation and that this stain penetrates well as we have mapped the localization pattern with respect to the internal anatomy.We show for the first time that the intact adult Drosophila can be imaged in 3D using OPT, also we show that this method of clearing is also suitable for confocal microscopy to image the brain from within the intact head. The major advantage of this is that organs can be represented in 3D in their natural surroundings. Furthermore optical sections are generated in each of the three planes and are not prone to the technical limitations that are associated with manual sectioning. OPT can be used to dissect mutant phenotypes and to globally map gene expression in both 2D and 3D

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers

    Foraging preference indices for all <i>Bombus</i> species excluding <i>B. hypnorum</i>, short-tongued <i>Bombus</i> species excluding <i>B. hypnorum</i> and <i>B. hypnorum</i>, for all plant taxa that co-occured with <i>B. hypnorum</i> on five or more transect visits.

    No full text
    <p>A foraging preference index >1 indicates a preference for visiting a given plant taxon (see ‘Materials and methods’). Results of Mann-Whitney U-tests between median foraging preference indices of <i>Bombus</i> species groups and <i>B. hypnorum</i>: * <i>P</i><0.05; ns, no significant difference. Error bar is ±1 S.E. Sample sizes (number of transect-visits at which plant taxon was present and focal bee species/group was foraging) in parentheses.</p

    Phenologies of <i>Bombus</i> spp. across the 42 study sites (in south-eastern Norfolk, UK).

    No full text
    <p>Abundances shown as total counts on the transects per given two-week period (hence each period reflects approximately equal sampling effort; see ‘Materials and methods’). Dates are expressed as dd/mm in the study year, 2012. Dark grey bars, queens; pale grey bars, workers; intermediate grey bars, males.</p
    corecore