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Genetic bottlenecks can limit the success of populations colonizing new
ranges. However, successful colonizations can occur despite bottlenecks, a
phenomenon known as the genetic paradox of invasion. Eusocial Hymenop-
tera such as bumblebees (Bombus spp.) should be particularly vulnerable to
genetic bottlenecks, since homozygosity at the sex-determining locus leads
to costly diploid male production (DMP). The Tree Bumblebee (Bombus hyp-
norum) has rapidly colonized the UK since 2001 and has been highlighted as
exemplifying the genetic paradox of invasion. Using microsatellite genotyp-
ing, combined with the first genetic estimates of DMP in UK B. hypnorum, we
tested two alternative genetic hypotheses (‘bottleneck’ and ‘gene flow’
hypotheses) for B. hypnorum’s colonization of the UK. We found that the
UK population has not undergone a recent severe genetic bottleneck and
exhibits levels of genetic diversity falling between those of widespread
and range-restricted Bombus species. Diploid males occurred in 15.4% of
reared colonies, leading to an estimate of 21.5 alleles at the sex-determining
locus. Overall, the findings show that this population is not bottlenecked,
instead suggesting that it is experiencing continued gene flow from the con-
tinental European source population with only moderate loss of genetic
diversity, and does not exemplify the genetic paradox of invasion.
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1. Introduction
Colonization and invasion events involve changes in population size, with
founding populations typically representing a subset of the source population.
This reduction in population size creates a sampling effect on alleles, reducing
genetic diversity [1]. Such a phenomenon, known as a genetic bottleneck, can
lead to reduced adaptive potential [2], inbreeding and subsequent loss of het-
erozygosity [3] and stochastic increases in the frequency of deleterious alleles
[4]. In turn, these processes may reduce the fitness of a founding population
and thereby hinder its establishment and spread across new ranges. However,
there are numerous examples of species that have successfully colonized new
ranges after undergoing severe genetic bottlenecks during their initial introduc-
tion [5,6], a phenomenon known as the genetic paradox of invasion [7]. Hence,
despite counter-cases [6,8], the relationship between colonization success and
levels of genetic diversity in founding populations remains to be fully resolved.

Genetic bottlenecks are potentially even more harmful in the Hymenoptera
(ants, bees, wasps and sawflies) due to single-locus complementary sex determi-
nation (sl-CSD). In sl-CSD, allelic diversity at a single locus, combined with
haplodiploidy, determines an individual’s sex [9]. Specifically, diploid individuals
heterozygous at the sex-determining locus develop as females whereas haploid
individuals hemizygous at the sex-determining locus develop as males. Under
low genetic diversity and/or inbreeding, there will be an increasing frequency
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of mating pairs sharing an allele at the sex-determining locus
(matched mating). In such cases, 50% of diploid offspring pro-
duced will be homozygous at the sex-determining locus and
therefore develop as diploid males [10].

Diploid male production (DMP) is costly since diploid
males are inviable or sterile [11,12] or produce inviable or
sterile triploid offspring [13,14]. These negative fitness
impacts are exacerbated in colonies of eusocial Hymenoptera
(all ants, bees and wasps with a worker caste), in which
diploid males replace half of the potential workers but do
not contribute to colony productivity [10]. Accordingly,
DMP reduces colony founding success and productivity in
both ants and bumblebees (Bombus spp.) [15–18]. In addition,
a high frequency of DMP represents a strong indicator of a
genetic bottleneck [19,20]. Despite this, eusocial Hymenop-
tera account for some of the most invasive species
worldwide [21,22], with several cases occurring in which
invasive populations have undergone severe bottlenecks
[23–27]. For example, the yellow-legged Hornet (Vespa
velutina) has successfully colonized much of southern
Europe following a founding event inferred to involve a
single multiply-mated queen [23].

Eusocial Hymenoptera perform essential services across
natural and farmed ecosystems [28]. In particular, eusocial bees,
including bumblebees and the honeybeeApis mellifera, represent
some of the most important insect pollinators of food crops and
wild plants [29], a role that is threatened by their widespread
declines (e.g. [29–31]). However, at regional scales, some bee
species are expanding their ranges, through either human trans-
portation or natural colonization events [26,32–35]. Given
concerns over maintaining bee populations, there is special
interest in determining the relationship between ecological
success and the genetic consequences of bottlenecks, mediated
by sl-CSD, in range-expanding eusocial bee species [24,26].

The Tree Bumblebee (B. hypnorum) represents a highly
successful range-expanding bumblebee. Having been initially
recorded in southern England in 2001 [32], apparently as a
natural colonist, it has rapidly increased in range and abun-
dance to become one of the most widespread and common
UK bumblebee species [36–38]. Historically, the range of
B. hypnorum extends across continental Europe and Asia
[32,39]. Hence, it seems likely that B. hypnorum arrived in
the UK from the closest neighbouring area of its pre-2001
range, northern France [32,39].

A previous study suggested that B. hypnorum underwent a
severe genetic bottleneck on its arrival in the UK, with male
production in the first brood (indicative of DMP, as first
broods are usually composed of workers alone) being observed
in three of 13 colonies reared from field-collected queens [38].
These data were used to estimate that the sex-determining
locus in the UK B. hypnorum population has four alleles and
that the founding population consisted of one or two multiply
mated queens [38]. Consequently, the successful establishment
and spread of B. hypnorum in the UK despite an apparently
severe genetic bottleneck has been cited as a prime example
of the genetic paradox of invasion [5].

However, the previous work [38] did not confirm DMP
genetically, nor account for facultative polyandry (multiple
mating by queens) in B. hypnorum [37,40–43], potentially
leading to an inaccurate estimate of allelic diversity at the
sex-determining locus [44]. Recently, up to 11 alleles were
found at neutral microsatellite loci in workers of a UK B. hyp-
norum population, in which queen mating frequency was
estimated at 1.7 mates per queen [37], suggesting a founding
population of greater than two queens. Moreover, recording
data show that B. hypnorum has expanded its range west-
wards within continental Europe across Germany and
Belgium from the middle of the twentieth century
[35,45,46], suggesting that colonization of the UK may rep-
resent part of an ongoing, large-scale range expansion in
Europe. Hence, whether colonization of the UK by
B. hypnorum truly exemplifies the genetic paradox of invasion
is uncertain. This suggestion is also consistent with the find-
ings of a recent RAD-seq study that showed similar levels of
genetic diversity and no evidence of structuring between six
UK B. hypnorum populations and one in northern France [47].

Therefore, we defined two contrasting genetic hypotheses
to characterize the mode of colonization of the UK by
B. hypnorum. Under the ‘bottleneck hypothesis’, a small
number of individuals founded the entire UK population in
a single, chance event [38]. This hypothesis predicts that the
UK B. hypnorum population will show low genetic diversity,
evidence of a recent severe genetic bottleneck (i.e. at the time
of colonization) and high levels of DMP. By contrast, under
the ‘gene flow hypothesis’, colonization of the UK by B. hyp-
norum represented part of an ongoing, large-scale westward
range expansion, with a larger founding population and sub-
sequent continued immigration from continental European
populations [48]. This hypothesis predicts that the UK
B. hypnorum population will show high genetic diversity, no
recent severe genetic bottleneck and low levels of DMP.

Using a panel of previously characterized polymorphic
microsatellite loci [37], we sought to discriminate between
these two hypotheses and so establish whether B. hypnorum’s
colonization of the UK truly represents a genetic paradox of
invasion. To this end, within a representative UK population
of B. hypnorum, we pursued two aims. First, we quantified
genetic diversity in workers (using data from [37]) and
males to perform the first test of whether the UK B. hypnorum
population has undergone a severe genetic bottleneck relative
to established UK bumblebee species. Second, because deter-
mining levels of DMP provides a powerful independent
means of estimating levels of genetic diversity in eusocial
Hymenoptera, we estimated the frequency of diploid males
and allelic diversity at the sex-determining locus genetically
for the first time in the UK B. hypnorum population.
2. Material and methods
(a) Genetic diversity and bottleneck analyses
(i) Worker sample collection and genotyping
Workers from a population of B. hypnorum in Norwich, Norfolk,
UK, were used to test for a recent reduction in effective popu-
lation size (bottleneck), i.e. one occurring at the time of
colonization [32]. A total of 675 B. hypnorum workers were
sampled non-lethally [49] from a 2 km2 area across two consecu-
tive summers (2014: n = 398; 2015: n = 277). Of these, 645 workers
(2014: n = 375; 2015: n = 270) were genotyped at up to 14 micro-
satellite loci (median = 11 loci), following methods described in
detail in Crowther et al. [37] and in the electronic supplementary
material (see also Crowther et al. [37] for original data).

(ii) Genetic diversity and bottleneck evaluation
All 645 worker genotypes from Crowther et al. [37] were used to
estimate measures of genetic diversity, i.e. the number of alleles
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per locus, mean allelic richness (AR), and mean observed (Ho)
and expected heterozygosity (He).

Using single workers randomly selected from each of 89
independent clusters among the worker genotypic data ident-
ified with COLONY v. 2 [50] (see the electronic supplementary
material), two different methods were employed to test for a bot-
tleneck in the B. hypnorum study population. The first was a sign
test implemented in the programme BOTTLENECK 1.2.02 [51],
in which an excess of expected heterozygosity over that expected
under mutation–drift equilibrium suggests that a recent
reduction in population size has occurred [52]. The second test
calculated the M-ratio [53] across loci for the B. hypnorum study
population. The M-ratio defines the ratio between allelic diversity
and allele size range at a locus, with bottlenecks leading to the
stochastic loss of rare alleles and a subsequent reduction of the
M-ratio [53]. Under mutation–drift equilibrium, an M-ratio of
less than 0.7 can be interpreted as evidence of a historical popu-
lation reduction, a signal that may persist for more than 100
generations [53].

To provide a set of comparative M-ratios in established UK
Bombus species, M-ratios were also calculated for UK populations
of the five species, B. hortorum, B. lapidarius, B. pascuorum,
B. ruderatus and B. terrestris [54]. These ‘reference’ Bombus species
have not undergone range expansions within the UK, and, except
for the scarce B. ruderatus, are common and widespread. There-
fore, M-ratios calculated for these species provided null values
against which the M-ratio calculated for B. hypnorum was com-
pared. Hence, if B. hypnorum experienced a severe genetic
bottleneck upon its colonization of the UK, it would be expected
to exhibit a lower M-ratio than the reference Bombus species.
Full details of both tests are in the electronic supplementary
material.
(b) Diploid male production and allelic diversity at the
sex-determining locus

(i) Male sample collection and genotyping
To estimate levels of DMP in B. hypnorum, males were sampled
from two sources. First, 380 male pupae were sampled from 20
mature B. hypnorum colonies collected in the field in Norfolk
and Suffolk, UK, over two consecutive years (2017: ncolonies = 17,
nmale pupae = 337; 2018: ncolonies = 3, nmale pupae = 43). These 20 colo-
nies each provided 7–24 randomly sampled male pupae for
genotyping (electronic supplementary material, table S1).

Second, to allow for survivorship biases in field-collected
nests (as detailed in the electronic supplementary material),
adult males were sampled from B. hypnorum colonies reared
from 107 queens collected from field sites in Surrey, Greater
London, and Norfolk (Norwich), UK, during spring 2018
(electronic supplementary material, table S2). In total, 37 of
the 107 field-collected queens reared at least one adult off-
spring (electronic supplementary material, table S3), with
nine colonies producing only workers, six colonies producing
only males and 22 colonies producing both workers and
males. Of the 28 colonies that produced males, 12 were
assigned as ‘first-brood male’ producers, which were defined
as colonies in which either any males eclosed within one week
of first worker eclosion (ncolonies = 6) or only males and no
workers eclosed (ncolonies = 6) (mean [range] n of first-brood
males produced per colony = 2 [1–7]); the remaining 16 were
assigned as ‘late male’ producers, which were defined as colo-
nies in which all males eclosed later than one week after first
worker eclosion (electronic supplementary material, figure S3
and table S3). From the 28 male producing colonies, a total of
232 adult males were sampled for genotyping (electronic sup-
plementary material, tables S3–S5), comprising 25 first-brood
males, which were defined as males that either eclosed within
one week of first worker eclosion or were produced by colonies
producing no workers, and 207 late males, which were defined
as males that eclosed later than one week after first worker
eclosion.

All sampled males (n = 612, i.e. 380 pupal males from field-
collected nests plus 232 adult males from colonies reared from
field-collected queens) were genotyped at the same microsatellite
loci as were used for the 2014/2015 worker samples described
above. However, because in males one locus (BTMS0132)
proved monomorphic, data analysis in males was based on a
median (range) of 13 (3–13) polymorphic loci.

(ii) Estimation of levels of diploid male production
Diploid males were assigned as those phenotypic males that
were heterozygous at two or more microsatellite loci across
two independent rounds of genotyping (as detailed in the elec-
tronic supplementary material). All males accepted as diploid
(50 of 612 males genotyped) were heterozygous at a mean
(range) of 5.5 (2–9) loci.

The diploid male data were then used to produce three esti-
mates of the frequency of colonies exhibiting DMP: (i) from the
field-collected colonies; (ii) from the colonies reared from field-
collected queens; and (iii) from the latter colonies after correcting
for sampling error arising when males were sampled for geno-
typing (see the electronic supplementary material).

(iii) Estimation of allelic diversity at the sex-determining locus
By applying the formula of Adams et al. [44] and an approach
accounting for facultative polyandry, our data on the frequency
of colonies exhibiting DMP and previous data on the frequency
distribution of queen mating frequencies in the main study
B. hypnorum population [37] were used to estimate the number
of alleles at the sex-determining locus (as detailed in the electronic
supplementary material). Boundary values were calculated by
assuming either (i) 100% single mating of queens or (ii) 50%
double mating and 50% triple mating of queens, as increasing
levels of polyandry have the greatest effect on the estimated
number of alleles at this locus (see the electronic supplementary
material).

All data analyses were carried out using R, unless stated
otherwise.
3. Results
(a) Genetic diversity and bottleneck analyses
Across the 645 workers and 14 microsatellite loci, the median
number (range) of alleles per locus was 5.0 (3–11), mean alle-
lic richness was 5.9, and mean observed and expected
heterozygosity were, respectively, 0.48 and 0.51.

The sign test found no evidence of a recent bottleneck, as
the number of loci that had an excess of heterozygosity (7.0 of
14 loci) was not significantly different from that expected (7.5
of 14 loci; p = 0.49).

The M-ratio (mean ± standard error) was 0.38 ± 0.05. This
fell within the range of the mean M-ratios for the five refer-
ence Bombus species (figure 1), and overall, across these
species plus B. hypnorum, there was no significant difference
in mean M-ratio (ANOVA, F5,31.9 = 1.95, p = 0.11). Unexpect-
edly, all Bombus species exhibited M-ratios under 0.7
(figure 1), indicating some support for historical population
reductions in all these populations. However, the overall con-
clusion from both the sign test and the M-ratio analysis was
that there was no strong evidence for a recent severe genetic
bottleneck in the UK B. hypnorum population relative to UK
populations of other Bombus species.
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(b) Diploid male production and allelic diversity at the
sex-determining locus

(i) Levels of diploid male production
Across the 612 males and 13 microsatellite loci, the median
(range) number of alleles per locus was 5.0 (3–8), and mean
allelic richness was 5.3 (electronic supplementary material,
table S6), broadly matching the results from the worker
genotypes.

All 20 field-collected colonies produced diploid offspring
(electronic supplementary material, table S1) and diploid
male pupae were found in one of them (5%), accounting for
4.5% of all genotyped male pupae (figure 2a).

Genotyping of adult males from the 37 colonies reared
from field-collected queens showed that, of the 32 colonies
that produced diploid offspring (including one male-only pro-
ducing colony that produced a diploid male), five (15.6%)
produced diploid males (electronic supplementary material,
tables S3–S5). These five DMP colonies comprised four of 12
(33.3%) first-brood male producing colonies and one of 16
(6.3%) late male producing colonies (figure 2b,c). At the
level of individual males, four of 25 (16.0%) first-brood
males and 29 of 207 (14.0%) late males were found to be
diploid (electronic supplementary material, table S3), with
diploid males accounting for 14.2% of all genotyped males.

Of the 26 colonies reared from field-collected queens, produ-
cing diploids and retained after correcting for sampling error,
four (15.4%) produced diploid males (electronic supplementary
material, tables S3–S5).

Overall, therefore, 15.4–15.6% of colonies reared from field-
collected queens produced diploid males. Moreover, given that
male diploidy was genetically confirmed in only 33.3% of first-
brood male producing colonies and 16.0% of first-brood males,
first-brood male production was a poor indicator of DMP, as
previously it has been assumed that 100% of first-brood male
producing colonies would be diploid male producing colonies
and 100% of first-brood males would be diploid males.

(ii) Allelic diversity at the sex-determining locus
Estimates of the proportion of colonies exhibiting DMP (D)
for field-collected colonies, colonies reared from field-
collected queens and colonies reared from field-collected
queens after correcting for sampling error were 1/20, 5/32
and 4/26, respectively, or 0.05, 0.156 and 0.154, respectively
(as above). Combined with published data on the relative
frequencies of singly, doubly and triply mated queens in
the main study population [37], these yielded estimates of
the frequency of matched mating (p) of 0.029, 0.094 and
0.093, respectively, and hence estimates of the number of
alleles at the sex-determining locus (N ) of 69.0, 21.3 and
21.5, respectively (as detailed in the electronic supplementary
material). Taking the last estimate to be the most accurate,
and adding the calculated boundary values, led to an esti-
mated number (with boundary values) of alleles at the sex-
determining locus in the UK B. hypnorum population of
21.5 (13.0–30.8) alleles.

4. Discussion
We analysed genotypic data from a UK population of the Tree
Bumblebee (B. hypnorum) to discriminate between two
hypotheses for colonization of the UK by this range-expanding
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species. The bottleneck hypothesis (small founding population
in a single, chance colonization event) predicted low genetic
diversity, a recent severe genetic bottleneck and high levels
of DMP. The gene flow hypothesis (larger founding popu-
lation and subsequent continued immigration from
continental European populations) predicted high genetic
diversity, no recent severe genetic bottleneck and low levels
of DMP. Our results showed relatively high allele numbers
at microsatellite loci and (as estimated from DMP levels) at
the sex-determining locus, no evidence of a recent severe gen-
etic bottleneck and relatively low levels of DMP. Therefore,
they do not support the bottleneck hypothesis and instead
support the gene flow hypothesis. Consequently, although
B. hypnorum has rapidly and successfully expanded its
range, it does not represent an example of the genetic
paradox of invasion.

(a) Genetic diversity and bottleneck analyses
Previous evidence suggested that the founding UK B. hyp-
norum population numbered as few as one or two multiply-
mated queens [38]. However, two queens mated with a
mean 1.7 males each [37] would yield a maximum of 7.4
alleles at any locus. This number of alleles is lower than the
maximum numbers of alleles found at microsatellite loci in
the combined data from workers in Crowther et al. [37] and
males in the current study (e.g. 11, 9, 9 and 8 alleles at the
loci BTMS0125, B10, BL03 and BTERN02, respectively).
Therefore, the allele number data do not support the UK
B. hypnorum population having been founded in a single
event by as few as two multiply-mated queens.

Expected heterozygosity and allelic richness atmicrosatellite
loci in the study B. hypnorum population (He = 0.51, AR = 5.9)
were both higher than values reported in Belgian and Estonian
B. hypnorum populations for which comparable data exist (Bel-
gium: He = 0.37–0.39, AR = 1.94–2.03; Estonia: He = 0.33, AR =
1.94) [55], while Huml et al. [47] found similar sequence-level
diversity between UK B. hypnorum populations and a French
population. In addition, expected heterozygosity in the study
B. hypnorum population was, on average, intermediate between
values found by previous studies in common, established, and
widespread European Bombus species and scarce, range-
restricted, and/or declining species (electronic supplementary
material, table S8). Specifically, it was lower than values for 7/8
populations of common species, and higher than those for 7/8
populations of scarce declining species (electronic supplemen-
tary material, table S8). Combined, these genetic diversity
comparisons again support the lack of a severe bottleneck in
the colonization of the UK by B. hypnorum.

Given that B. hypnorum is rapidly expanding its range
across the UK, and possibly recently did so across north-
western Europe [35,45,46], one might expect some loss of
genetic diversity to occur, since the leading edge of a disper-
sal front is subject to a loss of alleles and heterozygosity as it
moves further from the source population [56]. This is
especially true under leptokurtic dispersal [56], where small
numbers of long-distance dispersers found new sub-popu-
lations, as appears likely to be the case for B. hypnorum
queens in the UK [48]. The fact that the UK B. hypnorum
study population shows a level of expected heterozygosity
lower than values found in common European Bombus
species provisionally supports this idea (electronic sup-
plementary material, table S8). However, the idea requires
full testing by sampling an extensive series of B. hypnorum
populations across the UK and continental Europe.

Bombus species are annual insects that typically undergo
one generation per year. Some, including B. hypnorum, have
been suggested to exhibit facultative bivoltinism, i.e. two
colony cycles (and hence two generations) per year [57],
but there is little evidence that the second generation pro-
duces many new queens. Therefore, an estimated minimum
of 14–15 generations passed between B. hypnorum’s coloniza-
tion of the UK in or shortly before 2001 and the worker
sampling in the current study. Based on previous power ana-
lyses [52], our sign test was sufficiently powerful to have
detected a bottleneck 0.25 N to 2.5 N generations after the
initial bottleneck, where N equals the founding population
size (number of diploid individuals) immediately after a
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putative bottleneck [52]. Therefore, the sign test should have
detected a bottleneck of 6–60 diploid individuals (15 gener-
ations/2.5 = 6, and 15 generations/0.25 = 60). As the sign
test found no evidence of a bottleneck, it is therefore
unlikely that the founding population size was smaller than
60 diploid individuals (120 haploid genomes). In haplodi-
ploid eusocial Hymenoptera, this is equivalent to either 40
singly mated or 30 doubly mated queens. These calculations
again reject the bottleneck hypothesis and instead support
the gene flow hypothesis, since, if colonization of the UK was
part of a large-scale westward range expansion in B. hypnorum,
one would expect the number of immigrating queens in the
founding year and in each subsequent year to have been
relatively high.

The M-ratio analysis found no evidence for a level of his-
torical population reduction in B. hypnorum greater than the
levels found in five other UK Bombus species (figure 1). Unex-
pectedly, M-ratios for all tested Bombus species, including
B. hypnorum, fell below the mutation–drift equilibrium
threshold of 0.7 (figure 1), suggesting that the sampled popu-
lations of all species have undergone some degree of
historical population reduction, potentially up to approxi-
mately 100 generations ago [53]. Reasons for this are
unknown, as data on Bombus distribution and abundances
within the UK are mostly limited to recent decades [58]. Concei-
vably, the finding points to former population reductions in all
Bombus species at lowland agricultural sites [54], perhaps
associated with historical changes in agricultural practices.
Regardless, the conclusion remains that, in the recent UK
B. hypnorum population, there was no evidence of a bottleneck
more intense than in populations of long-established UK
Bombus species.

(b) Diploid male production and allelic diversity at the
sex-determining locus

In the study population of B. hypnorum, frequencies of DMP
colonies were 5% for mature, field-collected colonies and
15.4–15.6% for colonies reared from field-collected queens.
Given observed levels of facultative polyandry in the main
study population [37], these values equated to matched
mating frequencies of 2.9% and 9.3–9.4%, respectively. Gen-
etic studies of B. hypnorum from continental Europe found
no diploid males. However, in these studies, colony sample
sizes were lower, i.e. 13 colonies [42] or 10 colonies [43],
such that comparisons with the UK data return no statis-
tically significant difference in DMP frequencies between
UK and continental Europe populations (totals of 6/52
DMP colonies versus 0/23 DMP colonies, respectively: Fish-
er’s exact p = 0.169). Therefore, at most, DMP frequency is
only moderately higher in the UK than in continental Euro-
pean B. hypnorum populations. This is again consistent with
the gene flow hypothesis, qualified by some loss of genetic
diversity having occurred at the dispersal front represented
by the UK B. hypnorum population.

Previously, a frequency of DMP colonies of 23.1% (3 of 13
colonies) was reported in a UK B. hypnorum population [38],
but this was based on the assumption that all first-brood male
producing colonies exhibited DMP. However, our findings
demonstrate that only 33.3% of such colonies exhibit DMP
(figure 2b). If this was the case in the first-brood male produ-
cing colonies in the previous study [38], and 6.3% of the other
colonies in that study exhibited DMP (as in the current
study), then the frequency of DMP colonies in the previous
study [38] can be estimated as 12.5% (from [(0.333 ×
3) + (0.063 × 10)]/13 = 0.125), consistent with the values esti-
mated in the current study.

High DMP frequencies are characteristic of populations of
eusocial Hymenoptera known from other evidence to have
suffered severe bottlenecks during the colonization of new
ranges. For example, the French V. velutina population was
founded by a single polyandrous queen [23], and DMP is
observed in 48.3% of field-collected nests [20]. Similarly, the
Tasmanian B. terrestris population was founded by two mon-
androus queens [24], and DMP was inferred in 50% of
colonies reared from field-collected queens [19]. Correspond-
ingly, the relatively lower levels of DMP observed in the UK
B. hypnorum population do not support the occurrence of a
severe genetic bottleneck.

The estimated number of alleles at the sex-determining
locus in the UK B. hypnorum population (with boundary
values calculated by assuming 100% single mating or 50%
double mating and 50% triple mating of queens) was 21.5
(13.0–30.8) alleles. This estimate is consistent with the con-
clusion from the microsatellite data that the UK B.
hypnorum population has not undergone a severe bottleneck,
with even the lower bound exceeding the previous estimate
of this number [38] by over threefold. Based on genetic
assays of DMP, a total of eight alleles were estimated at the
sex-determining locus in B. florilegus, a species that has
undergone a severe range contraction across its Japanese
range [59]. The contrast between this value and the value esti-
mated from the UK B. hypnorum population is again
consistent with the lack of an extreme reduction in genetic
diversity in the latter population.

Combining the genetic and productivity data in the B.
hypnorum colonies reared from field-collected queens
suggests that DMP decreased colony productivity (DMP
colonies (n= 5): mean nworkers = 18, mean ngynes = 0, mean
nmales = 15; non-DMP colonies (n= 32): mean nworkers = 34,
mean ngynes = 6, mean nmales = 43). This suggestion is in line
with previous findings in ants and bees [15–18], and exempli-
fies the fitness costs of matched matings in bumblebees. Such
reductions in colony productivity may account for the lower
DMP frequencies observed in mature, field-collected colonies
than in queen-reared colonies (figure 2), with smaller colonies
being less likely to survive and be available for sampling, and
support the assumption of sampling and/or survival bias in
estimating DMP frequencies from field-collected colonies.

In conclusion, genetic data from the UK B. hypnorum
population showed relatively high genetic diversity, no evi-
dence of a recent severe genetic bottleneck and low levels
of DMP, matching predictions from the gene flow hypothesis.
Hence, colonization of the UK by B. hypnorum does not rep-
resent an example of the genetic paradox of invasion [5,38] or
an example of a eusocial Hymenopteran achieving rapid
range expansion despite high levels of DMP [19,20]. Along-
side evidence of B. hypnorum undergoing a recent westward
range expansion within Europe [35,45,46], our findings
suggest that this species may resemble other invertebrate
taxa that have recently expanded their ranges at a continental
scale. Examples in Europe include the wasp spider (Argiope
bruennichi) [60] and the dainty damselfly (Coenagrion scitulum)
[61]. In such cases, the central genetic phenomena are pro-
gressive loss of genetic diversity across an invasion front and
its consequent impact on adaptability [56,62], along with the
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genetic processes, if any, that trigger range expansions away
from the source population. Whether the above-mentioned
genetic phenomena impact B. hypnorum’s distinctive pollinat-
ing role in the UK [36] remains to be discovered.
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