1,347 research outputs found

    Optical diagnostics of metals in high temperature environments.

    Get PDF
    The thesis presents results for the detection of metal species in high temperature environments using optical techniques. Three optical techniques, namely laser Polarisation Spectroscopy (PS), Atomic Emission Spectroscopy (AES) and Laser-Induced Breakdown Spectroscopy (LIBS) have been employed. Each technique possesses some unique characteristics to achieve the aims of this work. The PS technique has been employed to detect atomic sodium (Na) in the seeded flames and plume of burning solid-fuel particles and to investigate atomic iron (Fe) in the welding fume plume. A mathematical equation has been developed to describe the lineshape of the target metal using PS technique in the high temperature environments, as follows: [figure omitted] The capability of PS technique employed for the quantitative measurement has been assessed. Due to the nonlinear measurement, the quantitative measurement using PS is not applicable in this work. In particular, the atomic Na released from burning solid-fuel particles. However, the qualitative analysis of atomic Na and Fe has been demonstrated. The time-resolved records of atomic Na released from the burning solid-fuel particles and the Stark shift of atomic Fe in the welding fume have been observed. The AES technique has been used to record the temporal atomic Na and K released from burning solid-fuel particles. The qualitative analysis of the simultaneous release of atomic Na and K using AES has been demonstrated. However, the quantitative analysis is not applicable in the present experimental arrangement. The temporal records of atomic Na and K were associated with the instantaneous shrinkage of burning solid-fuel particles. This implies that the release of atomic Na and K is related to the burning particle size. It was observed that the peak release of atomic Na and K released from the burning solid-fuel particles occurred at the end of char phase simultaneously. The quantitative measurement of atomic Na and K released from burning solid-fuel particles using LIBS has been achieved. The time-resolved histories of atomic Na and K released from burning solid-fuel particles are consistent with those measured using PS and AES. Unlike conventional quantitative measurement using LIBS, a particular absorption, termed as signal trapping to the calibration process, caused by the atomic Na or K in the outer seeded flames has been indentified. The overall comparison among three optical techniques summarizes the advantages and disadvantages of the metal detection in high temperature environments. The PS technique is capable of being applied to detect metal species in strong background environments. The AES possesses the capability of multi-element detection in flames with the characteristics of low cost, good sensitivity and simple experimental arrangement. However, the quantitative analysis of target metal species is not eligible for both techniques. The LIBS technique demonstrates the quantitative analysis with an appropriate calibration curve.Thesis (Ph.D.) -- University of Adelaide, School of Chemical Engineering, 201

    An integrated approach with new strategies for QSAR models and lead optimization

    Get PDF
    Compound testing set for huAChE collected from Guo et al. (PDF 52 kb

    Study on Microchannel Design and Burst Frequency Detection for Centrifugal Microfluidic System

    Get PDF
    A centrifugal microfluidic system has been developed in this study, enabling the control and measurement of the burst frequency in order to manipulate the liquid. The radial microfluid chips with different microchannel dimensions were designed for simulation analyses and experimental verifications. The microfluidic flow in the microchannel was analyzed using software CFDRC, providing an accurate result compared with that from experiment. The results show that the design of the overflow microchannel can correctly keep the liquid volume with error as low as 5%. For mercurochrome, the burst frequency has an inverse proportion to the channel width, and the simulation results agree with the experimental results. For oil, however, the experimental and simulation results indicate that the relationship between the burst frequency and channel width is not obvious due to oil properties. Since the simulation approach can provide an accurate prediction of flow behavior in the microchannel, the design of radial microfluid chip and the control of burst frequency can be achieved effectively. A practical application to design the centrifugal microfluidic disc for blood typing test was also carried out in this study. The centrifugal microfluidic system can successfully control the spinning speed to achieve the result of adding reagents in a specific sequence

    The Interplay of Reovirus with Autophagy

    Get PDF
    Autophagy participates in multiple fundamental physiological processes, including survival, differentiation, development, and cellular homeostasis. It eliminates cytoplasmic protein aggregates and damaged organelles by triggering a series of events: sequestering the protein substrates into double-membrane vesicles, fusing the vesicles with lysosomes, and then degrading the autophagic contents. This degradation pathway is also involved in various disorders, for instance, cancers and infectious diseases. This paper provides an overview of modulation of autophagy in the course of reovirus infection and also the interplay of autophagy and reovirus
    corecore