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Preface 

The documentation is the demonstration of many years of study and submitted for the award 

of the Doctoral of Philosophy. The topic of research is “Optical Diagnostics of Metals in High 

Temperature Environments”. Alkali metals released from combustion of solid-fuel particles 

(Loy Yang Brown coal and pine wood) in premixed methane flat flame and iron in the plasma 

cloud generated by gas tungsten arc welding were investigated using optical diagnostic 

techniques. The consumption of renewable energy resources increasingly grows owing to the 

issues of global climate change and rapidly diminishing reserves of energy resources. 

Understanding of alkali metals released during combustion is important for the industrial 

interests to maintain and to improve the equipment for power generation. To apply the 

comprehensive laser diagnostic techniques extensively in extreme environments, the studying 

of iron in the welding plasma could favour the understanding of dynamic chemistry and the 

dispersion of chemical species in the plasma fumes. 

The intention of this work is to assess techniques enabling the quantitative measure of sodium 

(Na) and potassium (K) released during the different stages of solid-fuel combustion so that 

industrial concerns can be satisfied. An understanding of the behaviour of iron (Fe) in 

atmospheric plasma would help reduce the hazard that it poses to operators.  

 

Li-Jen Hsu 
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Abstract 

The thesis presents results for the detection of metal species in high temperature environments 

using optical techniques. Three optical techniques, namely laser Polarisation Spectroscopy 

(PS), Atomic Emission Spectroscopy (AES) and Laser-Induced Breakdown Spectroscopy 

(LIBS) have been employed. Each technique possesses some unique characteristics to achieve 

the aims of this work. 

The PS technique has been employed to detect atomic sodium (Na) in the seeded flames and 

plume of burning solid-fuel particles and to investigate atomic iron (Fe) in the welding fume 

plume. A mathematical equation has been developed to describe the lineshape of the target 

metal using PS technique in the high temperature environments, as follows: 
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The capability of PS technique employed for the quantitative measurement has been assessed. 

Due to the nonlinear measurement, the quantitative measurement using PS is not applicable in 

this work. In particular, the atomic Na released from burning solid-fuel particles. However, 

the qualitative analysis of atomic Na and Fe has been demonstrated. The time-resolved 

records of atomic Na released from the burning solid-fuel particles and the Stark shift of 

atomic Fe in the welding fume have been observed. 

The AES technique has been used to record the temporal atomic Na and K released from 

burning solid-fuel particles. The qualitative analysis of the simultaneous release of atomic Na 
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and K using AES has been demonstrated. However, the quantitative analysis is not applicable 

in the present experimental arrangement. The temporal records of atomic Na and K were 

associated with the instantaneous shrinkage of burning solid-fuel particles. This implies that 

the release of atomic Na and K is related to the burning particle size. It was observed that the 

peak release of atomic Na and K released from the burning solid-fuel particles occurred at the 

end of char phase simultaneously. 

The quantitative measurement of atomic Na and K released from burning solid-fuel particles 

using LIBS has been achieved. The time-resolved histories of atomic Na and K released from 

burning solid-fuel particles are consistent with those measured using PS and AES. Unlike 

conventional quantitative measurement using LIBS, a particular absorption, termed as signal 

trapping to the calibration process, caused by the atomic Na or K in the outer seeded flames 

has been indentified. 

The overall comparison among three optical techniques summarizes the advantages and 

disadvantages of the metal detection in high temperature environments. The PS technique is 

capable of being applied to detect metal species in strong background environments. The AES 

possesses the capability of multi-element detection in flames with the characteristics of low 

cost, good sensitivity and simple experimental arrangement. However, the quantitative 

analysis of target metal species is not eligible for both techniques. The LIBS technique 

demonstrates the quantitative analysis with an appropriate calibration curve. 
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Nomenclature 

A     Pre-factor (experimentally determined), 1/concentration 

     Empirical Pre-factor Coefficient, dimensionless 

AFRexp    Experimental AFR, dimensionless 

AFRstoi    Stoichiometric AFR, dimensionless 

A21     Spontaneous Emission, s-1 

Ar     Surface Area of a Sphere, m2 

a1     Pre-factor, 1/concentration 

a2     Pre-factor Constant, dimensionless 

am     Molar Ratio, dimensionless 

B12/B21    Einstein Coefficient of Absorption / Stimulated Emission, m3·J-1·s-2 

b     Absorption Coefficient, dimensionless 

c     Specific Heat, J·kg-1·K-1 

     Light Speed, m·s-1 

Cs     Concentration of Alkali Salt, g·L-1 

Cspecies    Concentration of Atomic Na or K in the flame, ppm 

CNa     Concentration of Na, ppm 

CK     Concentration of K, ppm 

D0     Diameter of Pump Beam, m 

DP     Diameter of Focused Pump Beam, m 

DSD     Diameter of Nebulised Salt Droplet, μm 

ΔE     Energy Difference between Two Allowable Transition States, J 

EBS     Systematic Error Caused by Beam Steering, dimensionless 

Fpump-probe_geometry(γ,χ) Dependence of the IPS on the Geometrical Polarisation Status of the 
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Probe and Probe Beams 

fB Boltzmann Fraction of Target Species, dimensionless 

fi Boltzmann Distribution at the Energy State i, dimensionless 

fL Focal Length of a Lens, mm 

G(ω) Normalized Lineshape of the Target Species Absorption Function, 

dimensionless 

gi Degeneracy of Energy State i, dimensionless 

h     Planck’s Constant (= 3410626.6 −× ), J·s 

     Surface Convection Coefficient, W·K−1·m−2 

h      Planck's Constant Divided by 2π, J·s 

Iabs     Intensity of Absorption in PS Measurement, arbitrary unit 

Ibaseline    Intensity of Background in PS Measurement, arbitrary unit 

Iexp     Experimental Radiation Intensity of Atomic Na or K, arbitrary unit 

Iact     Actual Radiation Intensity of Atomic Na or K, arbitrary unit 

IPS     Intensity of PS Signal, arbitrary unit 

ILIBS     Intensity of Radiation using LIBS, dimensionless 

IPS_FIT(ω)    Simulation of PS Lineshape 

Iprobe     Intensity of Probe Beam in PS, arbitrary unit 

Ipump     Intensity of Pump Beam in PS, arbitrary unit 

k / kp     Thermal Conductivity Coefficient, W·K−1·m−1 

k     Boltzmann Constant, J·K−1 

[ ] total K     Total Concentration of K, ppm 

[ ]max
total
 
 K     Maximum Concentration of total K, ppm 

LPS     Probe Beam Path, m 

M     Molar Mass, g·mol-1 

mln     Normal Litre per Minute, L/min 
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Moleoxy    Molar Ratio of Fed Oxidizer, mol 

Molefuel    Molar Ratio of Fed Fuel, mol 

Massoxy    Mass of Fed Oxidizer, g 

Massfuel    Mass of Fed Fuel, g 

Molestoi-oxy   Stoichiometric Molar Ratio of Oxidizer, dimensionless 

Molestoi-fuel   Stoichiometric Molar Ratio of Fuel, dimensionless 

Moleexp-oxy   Experimental Molar Ratio of Oxidizer, dimensionless 

Moleexp-fuel   Experimental Molar Ratio of Fuel, dimensionless 

Nspecies    Population of Target Species, atom·m-3 

n     Refractive Index, dimensionless 

     Power of a Lorentzian function, dimensionless 

(3: Lorentzian-cubed; 1: Lorentzian) 

ns     Number Density of Target Species, atoms·m-3 

[ ] total Na     Total Concentration of Na, ppm 

[ ]max
total
 
 Na     Maximum Concentration of total Na, ppm 

P     Atmospheric Pressure, atm 

Q     Hear Transfer, J 

q     Partition Function, dimensionless 

r     Radial Distance, m 

rc     Radii of Unconsumed Core, m 

R     Radius of a Virgin Particle, m 

Gas Constant, J·g-1·mol-1·K-1 

RK/Na    Release Ratio of K-to-Na, dimensionless 

Rcoal     First Order Reaction Rate of coal, s-1 

RK_char/de Ratio of Peak Intensities of Atomic K at the Char and 

Devolatilisation Phases using AES, dimensionless 

RK_total_char/de Ratio of Peak Intensities of Atomic K at the Char and 
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Devolatilisation Phases using Quantitative LIBS, dimensionless 

RNa_char/de Ratio of Peak Intensities of Atomic Na at the Char and 

Devolatilisation Phases using AES, dimensionless 

RNa_total_char/de Ratio of Peak Intensities of Atomic Na at the Char and 

Devolatilisation Phases using quantitative LIBS, dimensionless 

S     Slope of Calibration Curve of LIBS Measurement, dimensionless 

T     Local Particle Temperature, K 

ΔT     Temperature Variation between Two Locations, K 

T0     Initial Particle Temperature, K 

Tc     Temperature at Core Surface, K 

Tf     Flame Temperature, K 

Tg     Gas Temperature, K 

TP     Temperature of Coal Particle, K 

Ts     Temperature at Particle Surface, K 

Tr     Room Temperature, K (298 K) 

υa     Air Flowrate, L·s-1 

υf      Total Gas Flowrate, L·s-1 

υg     Methane Flowrate, L·s-1 

υm     Mass flowrate of seeding salt solution, g·s-1 

υmf     Molar Flowrate of Total Gas, mol·s-1 

υms     Molar flowrate of seeded salt in the flame, mol·s-1 

υs     Consumption Rate of Salt Solution, L·s-1 

Δx     Shrinking Layer, m 

x     Absorption Length, m 

[X]species    Concentration of target species, atom·m-3 or ppm 

Greek Letters 
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Φ     Equivalence Ratio, dimensionless 

α(ω)     Absorption Coefficient at Angular Frequency, m-1 

Δα0(ω)    Induced Dichroism 

σa(ω)    Absorption Cross-Section at angular frequency, m2 

if JJσ ←     Absorption Cross-Section from the Initial to Final Rotational State, J 

σ      Stefan-Boltzmann Constant, W·K−2·m−2 

     Mean Relative Standard Deviation, dimensionless 

θ     Angular Offset of the Two Polarisers, radians 

λ     Wavelength, nm 

φ     Phase of the Wave (= PSLk ⋅ ) 

δ     FWHM of the Lineshape of Wavelength Scan Measurement, cm-1 

ξ     Fractional Light Leakage, dimensionless 

ρ     Particle Solid Density, kg·m-3 

γ Angle between the Polarisation Axis of the Probe Beam and the 

Vertical Axis, radians 

κ An Integral Constant, dimensionless 

χ Angle between the Pump and Probe Beam in the Horizontal Plane, 

Radians 

if JJζ ←     Polarisation Dependent Numerical Factor, dimensionless 

τpump     Laser Pulse Duration, ns 

τd     Duration of the Devolatilisation Phase, sec 

τc     Duration of the Char Phase, sec 

τa     Duration of the Ash Cooking Phase, sec 

ω12/ω21    Angular Frequency of the Transition, s-1 

ω Chosen Angular Frequency, cm-1 

ω0 Transition of Target Species, cm-1 
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XI 

Δωabs FWHM of Absorption, cm-1 

Δωcollision    Collisional Broadening, cm-1 

ΔωH Homogenous Line Broadening, cm-1 

Δωn Natural Linewidth, cm-1 

ΔωPS FWHM of PS Signal, cm-1 

Δωself    Self-broadening, cm-1 

ν     Frequency of Radiation, Hz 

ε     Emissivity, dimensionless 

Ratio between Atomic Species and Total Amount of the Species, 

dimensionless 

ψ     Surface Tension of Liquid, Water in This Work, mN·m-1 

Λ     Total Electronic Orbital Angular Momentum Quantum Number 

Σ, Π, Δ, Φ Electronic Energy State corresponding to Λ = 0, 1, 2, 3, 

dimensionless 

Subscripts 

0     initial 

a     air, area 

abs     absorption 

act     actual 

c     core 

cone     effective volume of the cone shape 

exp     experimental 

f     flame 

g     gas 

m     molar 
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max     maximum 

probe    probe beam 

PS     Polarisation Spectroscopy 

pump    pump beam 

r     room 

s     salt 

species    target species, such Na, K or Fe 

total     total 
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Acronym 

AES     Atomic Emission Spectroscopy 

AFR     Air-Fuel Ratio 

CNT     Carbon Nanotube 

EDX or EDS   Energy-Dispersive X-Ray Spectroscopy 

FTIR    Fourier Transform Infrared spectrometry 

FWHM    Full Width at Half Maximum 

GTAW    Gas Tungsten Arc Welding 

HDP     High Density Plasma 

HV     Heating Value 

ICCD    Intensified Charge-Coupled Device 

ICP-AES    Inductively Coupled Plasma Atomic Emission Spectroscopy 

LIBS    Laser-Induced Breakdown Spectroscopy 

LIPS    Laser-Induced Plasma Spectroscopy 

LOD    Limit of Detection 

IRPS    Infrared PS 

IRLIF    Infrared LIF 

LTE     Local Thermodynamic Equilibrium 

MFC    Mass Flow Controller 

MS     Mass Spectroscopy 

ND filter    Neutral Density filter 

NMR    Nuclear Magnetic Resonance 

PLIF    Planar Laser-Induced Fluorescence 

PS     Polarisation Spectroscopy 
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ppm     Part per Million 

ppb     Part per Billion 

SAES    Simultaneous Atomic Emission Spectroscopy 

SEM    Scanning Electron Microscopy 

SNR     Signal-to-Noise Ratio 

TGA    Thermogravimetric Analysis 

XRF     X-Ray Fluorescence 

XRD    X-Ray Diffraction 

Chemical Expression 

Element 

Aluminium   Al 

Barium    Ba 

Beryllium   Be 

Carbon    C 

Calcium    Ca 

Chlorine    Cl 

Chromium   Cr 

Copper    Cu 

Fluorine    F 

Hydrogen    H 

Iron     Fe 

Lead     Pb 

Manganese   Mn 

Nickel    Ni 

Nitrogen    N 

Oxygen    O 

Potassium   K 
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Silicon    Si 

Sodium     Na 

Strontium    Sr 

Sulfur    S 

Compounds 

Acetylene   C2H2 

Ammonia    NH3 

Carbon Radical  C2 

Carbon Monoxide  CO 

Carbon Dioxide  CO2 

Cyanide    CN 

Methylidyne   CH 

Ethane    C2H6 

Formaldehyde   H2CO 

Hydrogen Cyanide  HCN 

Hydroxyl Radical  OH 

Methane    CH4 

Methyl    CH3 

Nitrogen Monohydride NH 

Nitric Acid    HNO3 

Nitric Oxide   NO 

Nitrogen Oxides  NOx 

Potassium Chloride  KCl 

Potassium Sulphate  K2SO4 

Sodium Chloride  NaCl 

Sodium sulphite  Na2SO3 
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CHAPTER 1  

INTRODUCTION 

In this chapter, a brief outline of the research field is conducted, motivating the work. The 

specific aims of this work are addressed followed by the dissertation layout. The literature 

overview demonstrates the metal detection and analysis in high temperature environments 

regarding the specific issues in this work. The metal detection and analysis can be achieved 

using in situ and indirect techniques. In this work, the findings of sodium (Na), potassium (K) 

and iron (Fe) detection in high temperature environments viz. flames and plasma using optical 

techniques were assessed. The optical techniques employed in this work include Atomic 

Emission Spectroscopy (AES) and two laser diagnostic techniques, namely Laser-Induced 

Breakdown Spectroscopy (LIBS) and laser Polarisation Spectroscopy (PS). The utilisation of 

each technique is determined by the purpose of the individual experiment. 

1.1 Motivation 

To assess metal detection in high temperature environments using optical techniques, three 

metals have been selected owing to the industrial interests of burning solid-fuel particles and 

welding hazards for human beings. The release of alkali metal compounds is potentially an 

issue causing corrosion in furnaces, in particular, sodium (Na) and potassium (K). The 

detection of iron (Fe) in the welding fume presents the welding performance. 

Fossil fuels have been the major energy source for past decades. The alkali species released 

from coal combustion for power generation cause fouling and corrosion on heat transfer 

surfaces within the industrial coal-fired boilers [1]. These issues lead to unscheduled 
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shutdown for power plants. Hence, the understanding of emission of alkali species during coal 

combustion is useful for power generation industry. As a result of environmental issues and 

the shortage of fossil fuel, biomass has been considered to be an alternative energy source. 

However, due to the lower heat value (HV) of biomass compared to that of coal, the power 

generated using biomass currently is not enough for consumption demand and may not be 

cost effective. Although biomass employed for power generation reduces the emission of 

carbon dioxide (CO2), similar issues to coal combustion, namely corrosion and fouling caused 

by the release of alkali metal species, also occur in biomass combustion [2-7]. Moreover, the 

atomic Na and K were found to be the precursor to cause corrosion while reacting with 

chlorine (Cl) [8] or sulfer (S) [9] on heat transfer surface.  

Given significant issues caused by emission of alkali species, several techniques are available 

for analysis of alkali species released during solid-fuel combustion, such as ash analysis [10]. 

However, these techniques are indirect measurements of target species, which means the 

intermediate alkali species, such as atomic Na and K, are not applicable to be instantaneously 

detected. Hence, the laser diagnostic techniques become appropriate candidates to detect 

target species during solid-fuel combustion. 

van Eyk et al. [11, 12] reported the quantitative measurement of atomic Na released from 

burning coal particles quantitatively and Saw et al. [13-15] reported the atomic Na released 

from burning black liquor droplets using quantitative planar laser-induced fluorescence 

(PLIF). Due to the significant scattering from soot, however, the quantitative PLIF 

measurement of atomic Na was not achieved during the devolatilisation phase of burning coal 

particles. Moreover, the total population of Na species in the flames during combustion 

comprises various compounds in addition to atomic Na. Hence, it is unrealistic to identify 

each alkali species simultaneously using LIF.  

A particular laser diagnostic technique, namely polarisation spectroscopy (PS), possesses the 

excellent ability to suppress background noise [16] and is suitable to be employed in the 
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devolatilisation of burning solid-fuel particles for the detection of alkali species. Hence, the 

PS technique may be appropriate for the detection of atomic Na during the devolatilisation of 

burning solid-fuel particles. 

The advantage of the PS technique over other laser diagnostic techniques is its unique ability 

to suppress background interference. The PS technique has been employed to detect atomic 

Na in atmospheric pressure plasma [17]. This work [17] is preliminary to verify the PS 

measurement is eligible to be used in welding plasma. To further consider the hazard from 

welding plasma, the Fe in the welding fume could cause the potential hazard to human bodies 

[17]. Hence, greater understanding of the behaviour of Fe atoms in the fume may potentially 

reduce the hazard. 

Due to the intrinsic nonlinearity of the PS measurement, the feasibility of the PS technique to 

achieve quantitative measurement is always a complicated question. That is, the relationship 

between the arbitrary intensity and the corresponding reference concentration at a single 

transition is not linear using PS. Although theoretically quantitative PS is achievable by 

measuring the dichroism of the laser beam under the saturated regime, this is difficult to 

achieve in practice. 

A particular property of PS measurement is that significant absorption occurs when it is 

employed in highly populated media. It can be observed in several previous wavelengthscan 

results [17, 18]. The absorption occurred in the central transition. Hence, a specific 

wavelength away from the central transition of target species then may be determined for the 

detection of atomic Na in the plume of burning solid-fuel particles. 

In addition to Na species released in the plume of burning solid-fuel particles, the K species is 

also significant, especially for biomass fuels. Considering the wavelength difference between 

atomic Na and K in D1 or D2 lines, it is almost impossible to detect the both simultaneously 

using laser diagnostic techniques. The AES technique has been widely used to detect multiple 
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elements in flame samples [19] because it possesses good sensitivity and rapid response to 

some metal species, especially for alkali and alkaline elements. Moreover, the experimental 

apparatus is simple and cost-effective compared to those of laser diagnostic techniques. 

However, due to the difficulty of establishing calibration curves, quantitative AES may not be 

achievable. 

The LIBS technique, a plasma-based spectroscopic measurement, is applicable for metal 

detection in a designated location of the sample medium. By spectral analysis it is feasible to 

determine the total population of the Na and K, which may exist in various chemical forms 

within the plume of burning solid-fuel particles. Unlike the PLIF technique, the spectral 

signals can be distinguished from the scattering with optimum experimental conditions. 

However, as it is a plasma-based technique, some intrinsic limits of the LIBS measurement 

need to be addressed to achieve the quantitative measurement. 

The physical concepts of each technique selected to detect metals in this work is considered. 

Applying various techniques for metal detection can demonstrate the comprehensive 

investigation of technique applications and the relevant comparison among techniques to 

show the advantages and disadvantages in metal detection. 

Due to the significant difference between each measurement, the experimental details of laser 

system, burners and other apparatus are described together with the results in each chapter. 

The details of the chosen transitions of atomic Na (the D1 line: 589.592 nm) [20, 21], K (the 

D1 line: 769.896 nm) [20, 22] and Fe (385.991 nm) [20, 23] used in the spectroscopic 

measurement are listed in Table 1-1. 

1.2 Aims 

To address the aforementioned issues, the aim of this work is to assess the potential at 

existing optical techniques to permit instantaneous detection of target metals in a high 
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temperature environment. Five specific aims of this work are listed below: 

 To demonstrate the feasibility of polarisation spectroscopy for metal detection, in 

particular of atomic Na or Fe, in strongly radiating background environments. 

 To assess the feasibility of polarisation spectroscopy to be used for the quantitative 

measurement of atomic Na in practical burning solid-fuel particles. 

 To assess the capability of an existing AES technique in the detection of atomic Na 

and K released from the burning solid-fuel particles. 

 To develop the quantitative LIBS technique to be employed to detect the 

time-resolved [Na] and [K] released from the burning solid-fuel particles. 

 To compare the advantages and disadvantages among the three techniques used for 

metal detection in high temperature environments. 

1.3 Dissertation Layout 

This dissertation consists of seven chapters. The first chapter states the motivation, aims and 

literature overview. The literature overview confirms the need of developing optical 

techniques for metal detection in high temperature environments.  

Chapter 2 describes the fundamental background theories of relevance to the chosen laser 

diagnostic techniques of atomic spectroscopy, and outlines the processes of combustion and 

Table 1-1 The chosen transitions of atomic Na, K and Fe are employed in this thesis. The 
spectroscopic measurements include AES, LIBS and PS. Atomic Na and Fe were measured 
using PS in flames and welding fume, respectively. Atomic Na and K released from burring 
solid-fuels were measured using AES and LIBS. 



Ph. D. THESIS_SCHOOL OF CHEMICAL ENGINEERING_THE UNIVERSITY OF ADELAIDE 

6 

plasma. In addition, the details of systematic errors are addressed. 

The first and second aims of the work are addressed in Chapter 3 and in Chapter 4 

respectively. Due to the nonlinearity of PS measurements, a single wavelength is not always 

applicable to highly populated species. Unlike particular transitions chosen for the designated 

laser diagnostic techniques, the PS technique requires a wavelengthscan across the transition 

of the target species. This can reveal the behaviour of target species in the sample media. The 

capability of the PS technique, in the strong background noise (low signal-to-noise ratio, 

SNR), to provide the comprehensive application is accessed. A mathematical simulation has 

been developed to describe the lineshape of target species, which is atomic Na in the flames 

or atomic Fe in atmospheric plasma. This provides the insight for the future development of 

PS technique. 

Chapter 5 presents the AES technique employed to achieve the third aim. The AES technique 

is capable of detecting atomic Na and K simultaneously released from the plume of burning 

Loy Yang brown coal and pine wood particles in rich premixed laminar methane flames. The 

time-resolved spectra of the release records of atomic Na and K are indirectly related to the 

combustion behaviour of burning solid-fuel particles. 

Chapter 6 addresses the fourth aim using LIBS to measure total Na or K quantitatively at a 

designated location within the plume of burning coal and wood particles. As the LIBS 

measurement is a spectroscopic technique, the time-resolved records of total Na or K released 

from the burning solid-fuel particles were obtained. A novel calibration method adopted in the 

present experimental arrangement was developed for the quantitative LIBS used in flame 

samples. 

Chapter 7 includes two parts, namely conclusions and recommendations for future work. The 

last aim is assessed in the conclusion by the assessment of three optical techniques employed 

to detect metal species in high temperature environments. The recommendations suggest the 
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further work which can be done to more completely address the unanswered questions of this 

thesis. 

A significant portion of this work will be submitted to archival scientific journals. Currently, 

one paper has been accepted for publication and four papers are going to be submitted, as 

shown in Appendix J-3. 

1.4 Importance of Optical Diagnostics 

1.4.1 Overview of Laser Diagnostics 

The concept of laser (Light Amplification by Stimulated Emission of Radiation) was firstly 

proposed in 1905 by Albert Einstein, who further developed the theoretical foundations into 

the Photoelectric Effect in 1917. This effect is the optical amplification based on the 

stimulated emission of photons in which electrons may be excited from the ground state to 

higher energy levels. Meanwhile, the excited electrons are not stable and tend to return the 

lower states leading to energy release in the forms of radiation. Owing to the law of energy 

conservation, the emitted radiation may excite particles to generate more photons. This 

process is termed resonance. Due to the repeating process, once, sufficient photons occur and 

then a laser beam can be generated. More and more laser applications have been developed 

since 1958, when laser devices became commercially available.  

1.4.2 Significance of Laser Diagnostic Measurement 

A laser beam exhibits particular properties of radiation, namely narrow wavelength width, 

intense energy, and temporal and spatial coherence [16]. These properties allow laser 

diagnostic measurements being characterised by non-intrusive, spatially resolved, remote, 

time-resolved and species selective [24]. Laser diagnostics have provided a wealth of 
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information for development of models that describe combustion processes, or for detections 

of target species in extreme environments. To understand the behaviour of alkali metals 

released from burning solid-fuel particles or iron in welding plasma, optical techniques are 

suitable for the measurements required in this work. However, each technique has certain 

limitation. Therefore, each measurement typically requires different diagnostic techniques, as 

discussed in the following sections. A review article has detailed various measurements of 

on-line diagnostic techniques [25]. 

1.4.3 Atomic Emission Spectroscopy 

The atomic emission spectroscopy (AES) technique is to detect the transition (wavelength) of 

which target species characterise. This technique is widely employed in certain media, such as 

flames and plasma environments. The AES technique was first reported by Anders Jonas 

Ångström, a physicist in Sweden, in 1853. Ångström pointed out that an electric spark yields 

two superposed spectra and postulated that the luminous rays emitted from an incandescent 

gas can be absorbed, elucidating a fundamental principle of spectral analysis. Since then, 

spectroscopic analysis has become more and more important for metal analyte [19, 26, 27]. 

The intensity measured at a specific wavelength is proportional to the number density of the 

target element at that transition in the sample. The sensitivity of spectral lines of the target 

species using AES is determined by the characteristics of the spectrometer, the media and the 

other emission sources. The flame emission spectroscopy, for example, for certain alkali and 

alkaline earth elements [19, 26, 27], is appropriate for detecting the spectral lines of those 

elements with relatively strong intensities. For example, the AES technique is eligible for the 

detection of atomic Na and K in a flame environment.  

The AES technique has also been further modified for plasma media. A widely applied 

technique, namely Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) 

[28, 29], has been employed to measure the concentrations of samples given a proper 
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calibration curve. However, ICP-AES is typically not capable of quantitative measurement 

with high concentrations due to the significant and unavoidable self-absorption. This 

self-absorption occurs in any plasma application, leading to significant uncertainty in the 

measurement.  

By choosing a proper emission media and optimizing detection conditions, some short 

lifetime species, such as radicals of C2 [30-33], CN [30, 31, 34], C2H2 [35], NCH [34, 35], 

CH [33] and H [33, 35], have been detected in the synthesis of carbon nanotubes of which the 

growth mechanisms are determined. Hence, the AES technique can provide instantaneous 

measurement of multiple target species. 

The AES technique possesses a rapid response, good sensitivity, wide detection range and the 

potential for multiple species investigation, such as for measurement of Na and K released in 

flame media simultaneously. In addition, time-resolved measurement is also possible, which 

is useful to investigate the historical release of atomic Na and K during combustion of 

solid-fuel particles. These advantages are significant, compared with other laser diagnostic 

techniques. However, there are certain difficulties of the AES technique when employed in a 

flame medium. Because species emit and absorb at the sample wavelength, it is difficult to 

separate the two processes when the species are spatially distributed within the entire flame 

media. This issue causes difficulty in quantitative measurements, which seek to determine the 

number density of target species. The distribution of atomic Na [11, 13] or K in flame media 

changes along the flame axis because the chemical reactions in the flame media dominate 

atomic Na or K and alkali compounds. Hence significant development required before 

quantitative AES is applicable. 

1.5 Laser Diagnostic Techniques 

Laser diagnostic techniques are capable of the instantaneous measurement of many scalar 
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physical properties, such as temperature and the identification of species that may be either 

stable substance or intermediates, either qualitatively or quantitatively. In this section, two 

laser diagnostic techniques employed in this work to identify the target species will be 

reviewed. The fundamentals of each technique are introduced in Chapter 2. 

1.5.1 Laser-Induced Fluorescence 

Due to the significant similarities between PS, AES, LIBS and LIF, it is useful to briefly 

introduce the LIF technique although it is not being used in this work. 

Species generated during combustion include precursors, intermediates and soot (fine 

particles). Ash is also generated by the combustion of solid-fuel particles. The precursors and 

intermediates which exist temporally may not be identified at the end of process because most 

of the species (intermediates) of interest are produced and consumed during the process itself. 

This implies that those species need to be identified in-situ. The particular intermediates, 

hydroxyl radical (OH) [36-38] and formaldehyde (H2CO) [36, 39], generated by combustion 

have been measured using LIF. The detail principles and experimental arrangement has been 

academically described [16, 24, 40]. The species of OH and H2CO are usually employed to 

identify the flame structure. The species of OH has also been used to determine the flame 

temperature based on matching the measured spectrum to a numerical model [41]. The 

precursors, such as C2 generally found in the synthesis process of carbon nanotubes (CNTs) 

[30-33], tend to react with other species to form final products. This requires an instantaneous 

measurement to investigate the formation of carbon clusters because C2 is a precursor that 

exists briefly. 

The LIF technique has also been employed to detect various radical species in combustion 

processes. Nitrogen oxides (NOx) are important radical of interest to the environment concern. 

One of combustion products, nitric oxide (NO) [36] has been investigated [42]. In terms of 
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environmental effects, NO is implicated in acid rain and both NO and nitrogen oxide (NO2) 

participate in ozone (O3) layer depletion. Much effort to apply LIF for NO has been invested 

[43, 44]. The isotope of nitric monoxide, 14N18O [45], was measured using LIF to investigate 

the breath mode in order to understand the formation of NO. 

It is possible for LIF to be applied in a two-dimensional measurement. Planar LIF (PLIF) has 

been performed to investigate the two-dimensional distribution of carbon monoxide (CO) and 

carbon dioxide (CO2) [46]. The PLIF technique provides planar distribution of target species 

within flames, which is crucial for development and validation of combustion models. PLIF 

has been employed to measure atomic Na quantitatively in the plume of burning Loy Yang 

coal particles [11, 12] and black liquor droplets [13-15]. The distribution of atomic Na 

revealed that the concentration of atomic Na decreases along the central axis of the plume. 

However, significant scattering noise occurs in certain measurement environments leading to 

the low signal-to-noise ratio (SNR). The noise, for instant, caused by soot induces the 

intensity of the target species during the devolatilisation of burning coal particles using PLIF 

induces the sufficient uncertainty due to the same detection wavelength from the soot 

scattering [11]. Potentially three-dimensional LIF may be achieved by using multiple PLIF 

images revealing the structures of flames.  

Various forms of any species occur during the combustion of solid-fuel particles. Regarding 

the interests of Na released from burning solid-fuel particles, it is difficult to determine the 

total amount of Na release using the LIF measurement because of the wavelength selective as 

described. Although the total amount of Na may be estimated from the flux related to the 

combustion conditions [11], it may be obtained by using other laser diagnostic techniques. 

1.5.2 Laser-Induced Breakdown Spectroscopy 

The LIBS technique was first developed by Brech in 1962 [47]. The LIBS measurement is an 

alternative and complementary technique to LIF that offers the possibility to measure the total 
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amounts of multiple species at a single location. It has now been applied to solid, liquid and 

gaseous samples [48]. The accuracy of LIBS is dominated by three effects, namely matrix 

effect [49-51], spectral interference [51] and self-absorption [24, 51, 52]. In addition to 

interferences, the physical state and size of the samples should be taken into account [53, 54]. 

Yamamoto and co-workers [55] reported that the Limit of Detection (LOD) of barium (Ba), 

beryllium (Be), lead (Pb) and strontium (Sr) in contaminated soil samples were 265, 93, 298 

and 42 ppm, respectively. The LOD of solid samples are significantly high due to the matrix 

effect [51], in particular for solid samples [51] and the energy transfer is used to ablate 

samples leading to the lower plasma temperatures. Generally, the matrix effect resulting from 

components other than analyte in the samples can be eliminated by appropriate calibration 

[56]. Yamanoto et al. [57] also reported that the LOD for chromium (Cr), copper (Cu), 

manganese (Mn), nickel (Ni), and silicon (Si) in steel ranged from 0.11 to 0.24% using a 

long-pulse (150 ns) Q-switched Nd:YAG Laser. The quantitative LIBS measurement requires 

a reference to establish a calibration curve of the target species.  

Arca et al. [58] also quantified Na, K, calcium (Ca), Cr and chlorine (Cl) in drinking water. 

The LOD of LIBS applied inside the liquid was relatively high due to the relatively low 

temperature of the plasma resulting from the high heat loss. That is, LOD is highly dependent 

on the plasma temperature. Dudragne [59] reported that LIBS was quantitatively applied to 

measure sulfur (S), fluorine (F), Cl and carbon (C) in the atmosphere. Other studies [60-63] 

evaluated C, oxygen (O), hydrogen (H) and nitrogen (N) for various equivalence ratios of 

laminar premixed methane flames using LIBS.  

As LIBS attracts more and more attention, it has been employed to detect pollutants released 

from solid-fuel combustion. For the interest of alkali species released from burning solid-fuel 

particles, Na and K cause the major issues in power plants due to fouling, slagging and 

corrosion [1, 9, 64]. The LIBS technique has also been employed to determine the 

compositions of fly ash [65] and other ash samples [66] from a coal fired power plant. Blevins 
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et al. also investigated multiple-elements released at high temperatures in industrial boilers 

and furnaces [67]. Molina et al. also reported the measurement of Na and K in the 

high-temperature exhaust from a laboratory glass furnace [68]. The investigation of 

multi-elements has been conducted in aerosols, gases and in the mixtures of both phases using 

LIBS, providing new understanding of target elements. Chlorine has been determined to form 

potassium chloride (KCl) and sodium chloride (NaCl) facilitating corrosion by this method [8, 

69]. The compositions of coal and wood particles have been investigated quantitatively by 

applying LIBS [70, 71]. However, this can be achieved by applying ICP-AES with better 

accuracy due to the self-absorption free in IPC-AES measurement [29].  

To quantify the emission of Na and K during combustion by LIBS requires an appropriate 

calibration process based on comparison of the intensities of the chosen spectral lines between 

the target species and standard samples [51, 59, 72-78] although some researchers have 

reported a calibration-free LIBS measurement [79, 80]. The conventional calibration process 

is based on the intensity ratios and the concentration ratios between the testing and standard 

samples. LIBS has been employed with various types of solid samples, steel [49, 81], slag 

[82], aluminium (Al) [83] and wood preservatives [84]. The significant matrix effect leading 

to the poor coefficient of determination (R2) before correction has been observed in solid 

samples. In addition to the matrix effect, which is negligible in the flames of burning 

solid-fuel particles (gaseous samples), it is necessary to account for the interferences of 

self-absorption and spectral overlapping, which limit the accuracy of quantitative LIBS [51]. 

The influence of spectral overlap can be reduced by optimizing the gate delay and gate width 

for a specific wavelength, based on the lifetimes of the intermediates. Self-absorption cannot 

be avoided and becomes significant under high population levels of target species. 

Nevertheless, it can be reduced by selecting other alternative persistent spectral lines for 

calibration other than the major resonant ones [51]. For example, the chosen line of Na(I) is 

589.592 nm (D1) instead of 588.995 nm (D2) due to the strong absorption; the selected lines of 
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K(I) may be 404.414 and 404.721 nm instead of 769.896 (D1) and 766.490 nm (D2). Likewise, 

the chosen spectral line for calibration of Fe(I) is 404.582 nm instead of 248.328 nm to avoid 

self-absorption in highly populated level of Fe [51].  

The LOD for quantitative LIBS can also be improved by choosing appropriate reference 

wavelengths because LOD is related to the relative standard deviation (R.S.D.) and the slope 

of the calibration curve [51, 77, 85-87]. Due to the matrix effect and the heat loss of solid and 

liquid samples, the better LOD may be obtained in gaseous samples rather than in solid 

samples. 

1.5.3 Laser Polarisation Spectroscopy 

Laser polarisation spectroscopy (PS) is a technique developed by Wieman and Hansch in 

1976 [88] as a Doppler free method related to saturation spectroscopy but providing a 

considerably higher SNR. The PS technique generates a laser-like signal beam and permits 

remote detection so that the signal collection can be far away from the samples to avoid the 

background interference, for instance, from luminous environments with the presence of fine 

particles. In the case of sooty flames, the scattering affects LIF measurement when the elastic 

laser scattering possesses the same laser frequency with the fluorescence of the target species. 

Hence, it is necessary to detect LIF signals at a different wavelength from the laser frequency 

in such environments, which is not always possible. It has been observed that strong 

scattering is present at the investigation of atomic Na during the devolatilisation of the 

burning coal particles in lean laminar premixed flames [11]. In contrast, one-colour PS is 

conducted at the same laser wavelength so that it is not necessary for the target species 

involved to possess two different optical transitions. PS has been employed in gas tungsten 

arc welding (GTAW) to detect Na seeded into welding arc demonstrating the eligibility of PS 

employed in the environment with strong background noise [17].  
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Teets et al. [89] proposed a model used to describe the case of a pulsed unsaturated laser 

pumping with the laser pulse length shorter than the ground-state relaxation time, to describe 

the optical anisotropy using a direct approach related to rate equations. The PS technique was 

first applied in a flame by Tong and Yeung to measure seeded Na and Ba and achieve a LOD 

of 0.03 and 37 ng⋅mL-1, respectively [90]. Later, Zizak et al. [91] also applied PS of atomic 

Na in a seeded flame. It is proposed that the poor sensitivity of atomic Na using PS may be 

improved using better polarisers (with a better extinction ratio). An investigation of the PS 

signal strength related to the included angle (up to 7°) between the pump and the probe beams 

was performed by Zizak et al. [91] in the Na seeded flame. 

The PS technique applied in the infrared (IRPS) provides additional possibilities since most 

molecules possess infrared-active vibrational transitions, such as for hot water lines (H2O), 

carbon monoxide (CO), carbon dioxide (CO2) and nitrous oxide (N2O) which do not possess 

accessible visible or UV transitions. The CO2 molecule was investigated using IRPS at the 

wavelength of 2 μm  [18, 92, 93]. Alwahabi et al. [92] reported a linear dependence of the 

IRPS signal on the CO2 mole fraction indicating that the IRPS signal is nearly independent of 

the molecular collisions and that the molecular alignment at the time scale of the 

measurements does not strongly respond to the energy transfer processes between inter- and 

intra- molecules. This indicates that IRPS has the potential for quantitative measurement of 

gas concentrations instantaneously. Li et al. [93] also employed IRPS to detect nascent CO2 

and H2O in atmospheric pressure flames. This demonstrated the species-selective application 

of IRPS. Alwahabi et al. [18] also employed IRPS and infrared LIF (IRLIF) in CO2/N2 binary 

mixtures to determine the full width half maxima (FWHM) pressure broadening coefficients 

of CO2, which measured with IRPS, are 8% greater than those acquired using IRLIF. 

Motivated by the importance of OH radicals in combustion processes, the PS technique has 

been comprehensively used to detect OH radicals with single-photon [38, 94-98], 

two-photons [99] and two-dimensional measurements [100, 101]. The two-dimensional OH 
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using PS provides superior resolution to that achieved by using PLIF due to the better SNR. 

Other combustion products and intermediates have also been investigated using single-photo 

excitation of C2 [102], NH [96, 103], NO [104], methane (CH4) and C2H6 [105], C2H2 [106], 

CH [107], CH3 [108] and two-photon excitation of NH3 and CO [109] and N2 [110, 111]. 

Kulatilaka et al. [112] applied PS measurement in atmospheric pressure hydrogen/air flames 

with equivalence ratios ranging from 1.1 to 2.1 to detect atomic H. The PS signal of atomic H 

was found to be approximately proportional to the square of the pump beam power. These 

results show that PS can overcome some of the inadequacies of other laser diagnostic 

techniques for combustion processes. 

To enable quantitative detection with PS techniques, comprehensive calculations of 

lineshapes and saturation effects have been performed using direct numerical integration 

[113]. The experimental investigation of lineshapes of saturated PS signals [114] have been 

provided to verify theoretical calculations. These theoretical calculations predict that the 

signal intensity for the low power of the pump beam at the transition is proportional to k-6 (k is 

the collisional rate), which complicates the concentration measurement of target species. For 

the case of high pump beam energy (which is generally employed in the saturation regime), 

the PS signal possesses a weak dependence on the collision rates. This is crucial for 

quantitative measurements because the collision leads to quenching during measurements. 

Furthermore, in the unsaturated regime, the intensity of the PS signal (IPS) is expected to be 

described by a cubic dependence on laser power ( probepumpLPS III ⋅∝ 2 , where Ipump and Iprobe are 

the intensities of the pump and probe beams, respectively). In the saturated regime, the PS 

signal is expected to be independent of the intensity of the pump beam so that it scales 

linearly with the intensity of the probe beam (IPS ∝ Iprobe). The results of quantitative OH 

measurement performed [114] in an H2/air flame indicate that an energy of the pump beam (~ 

100 GW/m2) is enough to access the saturation regime. 

The PS signal is strongly dependent on the included angle between the pump and probe 
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beams. This dependence varies with the polarisation status and polarisation direction of the 

pump and probe beams. Reppel and Alwahabi [101] proposed a uniaxial gas model to 

describe the geometrical dependence of the PS signals. They presented a theoretical 

description of the dependence on the included angle to account for beam steering effects. The 

beam steering effect is a result of the variations in the refractive index of the media, typically 

caused by temperature gradients, which are present in flames and plasmas. 

Being a coherent technique with a laser-like signal, PS measurement presents the superior 

characteristics of an efficient signal collection and excellent discrimination against 

background noise from scattering and flame emission (spectral overlap). Hence, PS 

measurement is potentially suitable for detecting species in plasma environments [17, 115]. 

Indeed, the PS technique has already been employed to measure the local temperature of 

atoms in a discharge plasma [116].  

To understand the GTAW process for the reduction of hazard during welding, it is crucial to 

study iron (Fe) in the welding plasma [117]. Due to the characteristics of the PS technique, it 

is suitable for the detection of Fe in plasma environments.  

1.6 Indirect Analysis of Solid-fuel Particles 

The indirect analysis takes place later when the reaction is finished. Off-line analysis of the 

ingredients of fuels and ash has been used to identify the pollutant emission during 

combustion. Generally these analysis techniques are indirect measurement although the 

continuous monitor analysis has been commenced in the flue gas of combustion [118]. This 

continuous monitor, however, cannot detect the instantaneous species generated in the 

reaction. Indirect measurement methods Include X-ray Fluorescence (XRF), 

Energy-Dispersive X-ray spectroscopy (EDX or EDS), scanning electron microscopy (SEM), 

Nuclear magnetic resonance (NMR), X-ray Diffraction (XRD) and Mass Spectroscopy (MS) 
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[119]. Another technique, Fourier Transform Infrared Spectrometry (FT-IR), has been widely 

used to determine the unexpected molecules [120, 121] in ash samples. 

An ultimate analysis of fuels is used to determine elemental compositions of carbon (C), 

hydrogen (H), nitrogen (N), sulfur (S), chlorine (Cl) and oxygen (O) (by difference) in the 

gaseous products and organic substance, including calcium (Ca), iron (Fe), magnesium (Mg), 

titanium (Ti), sodium (Na), potassium (K), silicon (Si), aluminum (Al) and even mercury (Hg). 

The ultimate analysis of coal and wood samples employed in this thesis is shown in 

Appendix B. It should be noted that the term “combustion” indicates the thermal pyrolysis 

under air or oxygen. During this process, since coal and biomass contain inorganic 

compositions, some metals will be released in the flame plumes, including Na and K. The 

SEM/EDX measurement has been used to analyse the compositions of coal [10, 120, 

122-124], biomass [5, 124-127] and coal/biomass blends [128]. The SEM measurement 

provides the morphology of ash and the EDX measurement can be used to determine the 

relative concentration between all ingredients (semi-quantitative analysis) and the quantitative 

analysis may be achieved if a proper calibration is applied. Other indirect analysis methods, 

ICP-based techniques, for instance, ICP-AES [10] have been used to determine the 

concentrations of target species in the coal ash, and provide results that are consistent with 

concentrations obtained using EDX [10]. Moreover, the XRD measurement [10, 121, 123, 

124, 129] has also been applied to identify the mineralogical and physical properties of the 

ash compounds. Apart from those methods introduced above, MS, an early developed 

technique, has also been employed [130]. Generally, the MS samples extracted from flue 

gases are used to identify the species in the fly ash providing data for combustion modelling. 

However, the MS technique cannot be used to identify combustion intermediates or 

precursors due to the quenching effects. 
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1.7 Combustion Models 

Given that alkali species are released into the plume of burning solid-fuel particles, the 

combustion behaviour of these burning particles may be related to the release mechanism. 

Unlike the indirect measurement and analysis of solid-fuel particles combustion, the TGA 

(thermogravimetric analysis) technique provides a direct measure of mass loss of solid-fuel 

particles during combustion. The kinetic properties of coal and wood then can be obtained 

from TGA results. Various models of coal combustion have been proposed to describe single 

coal particle combustion [131-142] and reviewed widely in the past several decades [143-146]. 

A critical parameter in coal particle combustion is its porous structure [147-150]. Regarding 

the pore structure, the combustion mechanism has been described as the shrinking core [151]. 

The mechanism of coal combustion based on the pore structure has been extensively applied 

to describe the burning coal particles [152]. Hence, the combustion time related to the particle 

size can be determined [152]. 

A global model of wood particle combustion has been proposed by Branca and Di Blasi [153] 

and Branca et al. [154]. The devolatilisation stage is associated with hemicellulose, cellulose 

and lignin degradation [153]. Kinetic models ranging from one-step global to multi-step 

mechanisms have been proposed to describe wood char pyrolysis [153, 155]. These 

mechanisms based on TGA measurements describe the intrinsic properties of wood char 

pyrolysis. The multi-step mechanisms may be parallel- or series- have been reported [155, 

156].  

Similar to the coal char combustion, the combustion of wood char is often modelled by the 

shrinking core model which is based on the formation of pore structure [157-159]. To 

consider the shrinking core model [160-165], the particle size [166] and shape [167] of wood 

particles are also crucial. Moreover, the combustion time of wood particles is also dependent 

on the particle size and shape [168]. 
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1.8 Issues of Burning Coal and Wood 

1.8.1 Alkali Species 

Burning solid-fuels generates various gaseous products and particulate matter [169]. For the 

interest of this thesis, alkali metals, namely Na and K, can cause slagging, fouling and 

corrosion on the heat transfer surfaces of combustors or boilers [1, 170]. Due to the chemical 

and physical complexity of burning solid-fuels, the combustion conditions, varied from lean 

to rich conditions, dominate the forms of alkali species released, such as the concentration 

variation of atomic Na released from a burning black liquor droplet [13, 14]. It is useful to 

understand the background regime of alkali species released during combustion. Alkali 

species have been demonstrated to form the initial deposit, which facilitates subsequent 

agglomeration of other ash substances. Alkali species also form complex sulphates, leading to 

corrosion of combustor heat transfer surfaces [9, 171]. Fuels with high chlorine content 

facilitate the formation of alkali chlorides, which also cause corrosion in furnaces [8, 172]. 

Chlorine has been shown to be a major factor in deposit formation [172, 173]. In particular, 

potassium chloride is among the most stable high-temperature, gas-phase compounds and 

leads to severe problems in boilers.  

Elemental alkalis in low rank Australian brown coal from Victoria and pine wood pellets are 

present in several forms [174, 175]. The forms of sodium and minor potassium compounds in 

low rank coal are typically water-bound, organically bound or clay bound. In pine wood 

pellets, alkali species are biologically bound represented in hemicellulose, cellulose and lignin 

[172]. Alkali species in volatile substances were shown to condense in cooler zones of boilers, 

and to form sticky deposits on the surfaces [9, 172]. Clay-bound alkali species in coal [176] 

and in wood [172] form silica melts that are important in initiating slagging. 
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In the past decades, due to the concern about the increasing global warming, biomass, 

renewable energy sources indeed, has been considered as one of the feasible energy sources 

for its renewability and zero net carbon dioxide emission. The CO2 released from burning 

biomass is equivalent to the amount of that consumed during photosynthesis. In addition, 

there are some problems with the utilisation of biomass, such as low heating value, high 

chlorine and ash content. The heating value (HV) of biomass is much lower than that of fossil 

fuels leading to the higher cost of power supply owing to the less efficient electricity 

generation. A higher ash content of biomass fuel facilitates slagging faster than that caused by 

burning coal. Apart from two issues of burning biomass, high chlorine content can favour 

corrosion and fouling on the heat transfer surface due to the occurrence of higher 

concentration of alkali chloride, in particular potassium chloride (KCl) released from some 

biomass fuels, straw, for instance [5, 177-179]. Although alkali metals and chlorine can be 

leached out prior to the biomass combustion [180] to reduce the emission of alkali chlorides, 

the leaching process increases the cost and complexity of energy generation. Sulfur has been 

found to favour the formation of alkali sulfates so that the emission of alkali chlorides during 

co-firing of coal and biomass combustion has been reduced [8]. The co-firing of coal and 

biomass may benefit from higher HV and the reduction of CO2, compared with coal 

combustion. Moreover, the emission of alkali chlorides can be reduced by adding sulphur 

because alkali sulfate can be collected in the slag [181]. 

1.8.2 Other Pollutant Emission 

The pollutants released during the burning of solid and liquid fuels are classified as fine 

particles, which includes soot and ash powder, and flue gases, including CO2, N2O, NOx (NO 

and NO2) and SOx etc [169]. The earth absorbs part of the sun’s radiation (shorter 

wavelengths) and emits in the forms of longer wavelengths, partially IR radiation, which is 

re-absorbed by the greenhouse gases, namely CO2, NOx, CH4, O3 and chlorofluorocarbon 
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(CFCs), and re-emitted, in the form of IR, back to the environment leading to the raising 

atmospheric temperature.  

The CO2 molecule, most significant greenhouse gas released from burning fossil fuels every 

year, has attracted much attention in the past few decades due to the burning fossil fuels 

contribution to the increase global warming [182]. NOx absorbs ultraviolet light in the 

atmosphere facilitating O3 formation [183].  

1.9 Particular Measurement in Welding Plasma 

Plasma generates a broad range of spectra from various species. Given that the spectra from 

one species may overlap with that from other species, the spectral interference needs to be 

accounted for. However, this is not always possible. For LIF applied in a plasma plume, a 

correction ought to be performed to suppress the spectral interference that possesses the same 

transition with that of target species. As introduced in Section 1.5.3, the PS technique is 

suitable to be employed in plasma environments [16, 17, 24]. 

1.9.1 Low Signal-to-Noise Ratio Environment 

For LIF measurement with the possible interference of scattering emitting the radiation at the 

same wavelength causing the low signal-to-noise (SNR) signals, the level of noise signal is 

such significant [16, 24]. To avoid the interference, the chosen wavelength of target species 

needs to be different from that of scattering signals. Unlike LIF signals measured directly 

from samples, the polarisation change of the laser beam at the chosen transition is detected. 

This allows PS to avoid the scattering interference indicating the PS technique is eligible to be 

employed to measure target species in the strong background environments [17, 115-117]. 

The detailed explaination of PS technique will be introduced in Chapter 2. 
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CHAPTER 2  

THEORIES AND EXPERIMENTAL 

BACKGROUND 

This chapter contains the fundamental theories of optical diagnostic techniques followed by 

the last section which evaluates the systematic errors of the present experimental arrangement. 

2.1 Laser Diagnostic Techniques 

Laser diagnostic techniques are well-known as a convenient manner providing the 

measurement non-intrusively, spatially, temporally, and spectrally selective excitation. Laser 

diagnostic techniques are capable of measuring a pool of radical species, such as OH, CH, NH, 

cyanide (CN), HCN and elements in flames. There are three techniques widely applied to 

detect target species in flames [16].  

2.1.1 Laser-Induced Fluorescence 

Laser-induced fluorescence (LIF) is capable of detecting species in flames qualitatively and 

quantitatively (with an appropriate calibration curve). Fluorescence, the spontaneous emission 

of radiation from an excited energy state, is characterised as a specific wavelength. For 

example, the D1 and D2 lines of atomic Na are respectively 588.995 and 589.592 nm and 

those of atomic K are 766.490 and 769.896 nm, respectively [20]. For iron (Fe), various 

transitions are well-known, such as 248.327, 248.814, 385, 991 nm et al [20].  
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LIF is a widespread technique detecting species in flames. There are several fundamental 

criteria which must be satisfied to achieve LIF measurement [16, 40]: 

 The known transition is essential for the target species. 

 The absorption transition of the target species is accessible by the laser source. 

 An appropriate calibration curve is necessary for the quantitative measurement. 

 Relaxation effects must be considered. 

The LIF technique has limitations, which are the single wavelength (wavelength dependence 

to the target species) and low signal-to-noise ratio during the devolatilisation phase of burning 

solid-fuel particles [11, 12], so that LIF is not eligible for investigating species released from 

the devolatilisation of burning solid-fuel particles due to the significant scattering and for 

detecting multiple species in flames simultaneously.  

2.1.2 Laser-Induced Breakdown Spectroscopy 

Laser-induced breakdown spectroscopy (LIBS) is also nominated as laser-induced plasma 

spectroscopy (LIPS) due to the characteristics of the technique. The LIBS technique is a type 

of atomic emission spectroscopy as a pulsed laser is focused to form plasma, by which 

samples are atomized and excited. As the characteristics of LIBS, similar to the inductively 

coupled plasma atomic emission spectroscopy (ICP-AES) and arc/spark emission 

spectroscopy, the measurement takes place in a single point of measurement volume and 

hence it seems difficult to achieve planar LIBS measurement.  

LIBS is eligible to be utilized to analyse any matter in physical forms of solid, liquid or gas 

[52]. Due to the spectroscopic characteristics of the LIBS measurement, some interference 

ought to be taken into consideration, namely matrix effect, spectral interference and 

self-absorption [52]. The matrix effect, which generally occurs in solid samples, is negligible 
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to the gaseous environment. Flame samples can be considered as gaseous media. The 

occurrence of spectral interference depends on the background noises (emission radiation) and 

the overlapped spectral lines (other species). This can be eliminated by optimizing the gate 

delay and gate width specifically for the target species. As to the self-absorption, it is the 

intrinsic property that is unavoidable in plasma-base measurement techniques. As a result of 

the focused laser beam, the temperature of the early LIBS plasma plume can exceed 100,000 

K and decreases ranging from 5,000 to 20,000 K while it expands to reach the local 

thermodynamic equilibrium (LTE) in about 1 μs. During the early plasma that characterises a 

continuum of radiation, the target species dissociates into excited and atomic states. The target 

species in the LTE plasma where the measurement takes place possess the major resonant 

lines (the main persistent lines) leading to the absorption of the radiation in the following 

plasma generation. Certain radiation of the target species emitted in the following plasma will 

be absorbed by the target species in the previous plasma at the LTE stage. The absorption is 

nominated as “self-absorption” due to the characteristics of absorption mechanism. The 

characteristic radiation of target species is re-absorbed by which is in the outer plasma (LTE 

plasma), as indicated in Figure 2-1. Therefore, the self-absorption is not negligible as the 

significant amount of target species is present. However, the self-absorption can be reduced 

by choosing other weak persistent transitions. 

Generally speaking LIBS is capable of detecting all elements simultaneously depending on 

the chosen grating (normally ranging from 200 to 800 nm). The wavelength range also relates 

to the resolution of LIBS measurement. The limit of detection (LOD) is varied by: 

 The sensitivity of the detector 

 The optical window for radiation collection 

 The strength of the selected transition 
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The temperature of LIBS plasma is determined by the applied laser energy and types of 

samples. As a result of the types of samples, the certain amount of laser energy is consumed to 

ablate and to dissociate the target species leading to the lower plasma temperature. Moreover, 

the heat loss, due to LIBS plasma applied inside the liquid samples, significantly reduces the 

temperature of LIBS plasma. For the gaseous samples, such as the flame environment which 

is the case of this thesis, small amount of energy is utilized to dissociate the target species and 

hence the LIBS plasma relatively obtains the highest temperature leading to the better LOD. 

The absorption of radiation caused by the material of optical window can slightly reduce the 

LOD. This can be improved by selecting the low absorption index of optical lens to the 

viewed transition. Although the chosen strong transition improves the LOD, it also enhances 

the self-absorption, especially under high concentrations of target species. Therefore, it is 

necessary to optimize measurement conditions by adjusting the gate width and gate delay of 

the ICCD camera. 

As the practical purpose of quantitative measurement with LIBS, it is essential to conduct a 

calibration process which generally demonstrates the direct relationship (linear) between the 

intensity of LIBS radiation and the concentration of the target species. An empirical equation 

based on Lomakin-Scheibe formula [184, 185] with the consideration of negligible 

Figure 2-1 Illustration of self-absorption occurring when the initial plasma (Pinitial) reaches 
LTE status (PLTE); the following plasma (Pfollowing) generated in the centre of plasma is 
re-absorbed in the edge of PLTE. Hence, the intensity of radiation measured by an ICCD 
camera is weaker (represented in thinner blue arrow). 
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self-absorption (ideally without self-absorption) is presented below: 

speciesLIBS AI [X]⋅=  

Eq. 2-1 

where, ILIBS is intensity of radiation using LIBS; A is an empirical pre-factor coefficient and 

[X]species is the concentration of target species. It has been commonly employed in inductively 

coupled plasma atomic emission spectroscopy (ICP-AES) technique and can be utilized in 

LIBS owing to the plasma characteristics of LIBS measurement. However, this empirical 

equation is practically applicable while the tested [X]species is low so that the self-absorption is 

not significant in the experimental ILIBS. The case of saturated regime, which is caused by the 

gradually significant self-absorption with the increasing population level of target species, 

requires certain experimental consideration. For example, samples for ICP-AES measurement 

are dissolved in acidic solution, which may be nitric acid (HNO3), and seeded into ICP-AES 

system. The concentration of target element can be obtained using a calibration curve based 

on Eq. 2-1. In order to reduce self-absorption and to improve the accuracy of measurement, 

the diluted sample solution is seeded into ICP-AES system. Hence, the diluted concentration 

is obtained so that the actual concentration can be derived. This method is specifically used in 

the analysis of ash composition. However, it is not applicable to analyse the instantaneous 

elements released burning solid-fuel particles. Hence, self-absorption to the quantitative LIBS 

is not avoidable.  

2.1.3 Laser Polarisation Spectroscopy 

2.1.3.1 Introduction 

Given the difficulty to measure atomic Na species release during the devolatilisation of 

burning solid-fuel particles using LIF [11, 12], laser polarisation spectroscopy (PS) is 
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potentially appropriate due to the characteristics of laser-like signals and the advantage of 

signal-to-noise ratio (SNR). Unlike saturation absorption spectroscopy, it measures a small 

change in absorption against a strong background leading to the limiting sensitivity of the 

probe beam. The PS signal results from a polarisation variation of the probe beam (the 

induced dichroism) against a small background and is detected as a modulation of the probe 

beam while it passes through the crossed polarisers. The PS signals are measured by an ICCD 

camera or a photo-diode and hence characterise a laser-like behaviour which differs from the 

fluorescence measurement using LIF. The intensity of LIF signal is varied with the 

measurement conditions, which are delay time and gate width of an ICCD camera. Unlike LIF 

signals, the PS signal is a form of absorption spectroscopy so that quenching does not 

significantly affect the PS signal.  

The schematic description, as indicated in Figure 2-2 [16], PS measurement requires two 

beams arbitrarily crossed owing to no phase matching required. However, the included angle 

between the probe and pump beams has been investigated to be less than 30˚ [91]. For PS 

measurement, a single laser beam is split into a low (~ 5 % of that in the original laser beam) 

and a strong (~ 95 %) energy beams, which are crossed in the measurement location, for the 

Figure 2-2 Schematic arrangement of PS measurement [16]; BS: Beam Splitter, M: Mirror, L: 
Lens, QWP: Quarter-Wave Plate, P⊥ and Pװ: vertical and horizontal polarisers, respectively; 
BSp: Beam Stopper 
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case of this thesis, inside the laminar premixed methane flames. Due to the transition nature 

of the target species (branches of P, Q and R), the pump beam is either circularly polarised by 

applying a quarter-wave plate ( 4/λ ) or linearly polarised 45° to the polarisation of the probe 

beam. The probe beam through the first polariser (Pװ, can be P⊥), as shown in Figure 2-2, is 

polarised and passes through the flame samples in which the probe and pump beams are 

crossed. Furthermore, the probe beam passes through the second polariser (P⊥) and, therefore, 

the polarisation variation (the induced dichroism) can be detected by an ICCD camera.  

2.1.3.2 Theory 

The probe beam in the interaction zone perceives dichroism, which is induced by beam 

absorption and birefringence, due to the presence of electronic resonance. Refraction index is 

elliptically polarised, which is induced by dichroism, and hence it is eligible for the probe 

beam to pass through the blocking polariser. The PS technique is a form of saturation 

spectroscopy [16] with the change in the real and imaginary parts of the refractive index 

which are proportional to the fluence of the pump beam. It indicates that |E2| needs to be taken 

into account. To discuss |E2| as the signal equation for PS summarized by Zizak [91], it is 

necessary to consider the orientation of pump beam circular polarisation weather it is right or 

left handed. For linearly polarised probe beam, it could be considered to be right (termed +) 

and left (termed −) circularly polarised beams with equal intensity. These probe beam 

components responds differently to the pump beam and experience different absorption 

coefficients, +α  and −α , and different refractive indices, +n  and −n . Given the length of 

the interaction volume measured along the probe beam path, LPS, with the pump beam, the 

probe beam components are introduced, as presented below [40]: 
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Eq. 2-2 

The transmitted component of light emerging from the second polariser can be expressed in 

the following equation: 
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Eq. 2-3 

where, P0E is the amplitude of probe wave and φ (= k·LPS) is the phase of the wave. As 

−+ −≡Δ kkk  and −+ −=Δ ααωα )(  (the induced dichroism at the probe beam angular 

frequency) are assumed to be very small (<< 1), the Eq. 2-3 can be modified and presented in 

the following equation: 
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Eq. 2-4 

where, θ is the angular offset of the two polarisers which are nominally crossed. Moreover, by 

applying the Kramers-Kronig relation (as shown in Appendix E) between absorption and 

dispersion, it describes the difference of refractive index, as presented below: 
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where, δ  is the FWHM of the lineshape and the subscript 0 refers to the centre of the scan 

lineshape. The transmitted irradiance, IPS(ω), derived from t
*
t EE ⋅  is presented in the 

following equation: 
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Eq. 2-6 
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where, Iprobe is the input probe beam intensity; ξ  is the fractional light leakage owing to 

birefringence in the polarisers and optics. As the result of a Lorentzian shaped absorption 

profile (Doppler-free or pressure broadened), )(ωαΔ  may be expressed: 

      )
1

1()( )( 20 x+
⋅Δ=Δ ωαωα  

Eq. 2-7 

where, x is the relative detuning of the probe beam from line centre for the transition (J,M) to 

(J”,M”), defined as δωω )( 0 − and )(0 ωαΔ  is the line centre induced dichroism for the 

probe beam. By substitute Eq. 2-7 into Eq. 2-6, the transmitted irradiance, IPS, is modified 

and presented as following: 
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Eq. 2-8 

The first two terms, ξ  and θ 2, represent the unintentional and intentional light leakage. The 

ξ  (the unintentional leakage) is caused by the imperfect extinction of the crossed polarisers 

and birefringence induced by optics. The last two terms are recognized as the signal terms. 

The first signal term represents a dispersive modulation of an intentional background at which 

a non-zero θ is recognized. As to the second signal term, it represents the absorption-like line 

profile. To compare Eq. 2-8 to Eq. 2-7 (the Lorentzian profile), from the diagnostic point of 

view, it is assumed that the PS measurement takes place with absence of the intentional light 

leakage (θ = 0). This indicates the maximum detection of limit results from minimizing the 

value of ξ  since the signal-to-noise ratio (SNR) is generally the ratio of the fourth and first 

terms in Eq. 2-8. It is the order of 10-5 to 10-6 that the finest polarisers generally have 

indicating ξ  will be equal to or larger than that depending on the quality of the intervening 

optics. 

For the purpose of quantitative measurement, )(0 ωαΔ  has been summarized [16, 40] and is 

related to the number density of the target species: 
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Eq. 2-9 

where, Nspecies is the population of the species in ground state; fB is the Boltzmann fraction of 

the target species; Ipump is the irradiance of pump beam; τpump is the pulse duration; 
if JJ ←σ is 

the absorption cross section from the initial rotational state, J, to the final rotational state and 

then 
if JJ ←ζ is a polarisation dependent numerical factor, as indicated in Appendix F, which 

has been proposed by Teets et al. [89]. It is noted that 
if JJ ←σ is not polarisation dependent 

since it is the summation of all the magnetic sublevels. Moreover, )(0 ωαΔ  (in Eq. 2-9) is 

substituted into Eq. 2-8 so that IPS is further expressed: 
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Eq. 2-10 

It clearly indicates that PS signal scales as the third power of the intensity of the pump beam 

( 2
pumpprobePS III ⋅∝ ). Hence, PS signal possesses a third-order nonlinear regime. The PS signal 

also experiences the square power of number density of the target species and the interaction 

length.  

Given that polarisers are perfectly crossed and without birefringent interference from optics in 

the pathway of the probe beam in the unconfined combustion, the transmitted PS signal, 

IPS(ω), can be modified below: 
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Eq. 2-11 

To further consider the dependence of the IPS(ω) on the geometrical polarisation status of the 

probe and pump beams, Eq. 2-11 is specifically developed, as shown below [101]: 
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Eq. 2-12 

where, ξ  is the extinction ratio of the polarisers (mentioned above), )(0 ωαΔ  is the induced 

dichroism (mentioned above), and )(G ω  represents the normalized lineshape of the target 

species absorption function. The function, ),( χγF etryprobe_geompump− , represents the dependence 

of the IPS on the geometrical polarisation status of the probe and pump beams, where γ is the 

angle between the polarisation axis of the probe beam and the vertical axis, and χ is the angle 

between the pump and probe beams in the horizontal plane. 

The PS lineshapes were firstly reported in 1976 by Wieman and Hänsch [88] to be Lorentzian 

if the Doppler width was greater than the collision width. However, Teets et al. [89] and 

Demtröder [24] proposed that the PS lineshapes are generally Lorentzian and outlined it based 

on the Lorentzian profiles [24, 89]. In addition, Reichardt and Lucht [113] further extended 

Wieman’s and Hänsch’s work in the theoretical calculation of PS lineshapes in 1988. The 

direct numerical integration of the time-dependent density matrix equation has been 

conducted to predict that PS lineshapes approach the Lorentzian limit with larger values of 

Doppler width and non-saturated pump beam energy. Moreover, the PS lineshapes 

characterise the Lorentzian-cubed with small values of the Doppler width and non-saturated 

pump beam energy. 

The PS line profiles distinguish significantly from LIF line profiles [18]. Regarding the low 

pump beam fluence (unsaturated regime), the PS line profiles are Lorentzian cubed [92, 106]. 

As to high pump beam fluence applied (saturated regime), the PS line profiles are described 

as a Lorentzian function, even whilst the Doppler broadening is larger than the collisional 

broadening [92]. To describe the PS lineshapes to account for the parameters of the PS 

measurement, a general Lorentzian function form of power n is introduced, as outlined 

below:[17]: 
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Eq. 2-13 

where, IPS_FIT(ω) is the simulation of PS lineshape, IPS is the intensity of pure PS signal, ω is 

the chosen frequency, ω0 is the transition frequency (centre wavelength), HωΔ  is the 

homogenous line broadening, and the values of n as 1 and 3 indicate the saturation and 

non-saturation pump beam conditions, respectively.  

Compared the particular characteristic of PS technique to that of LIF technique indicated in 

Figure 2-3, the mechanisms of target species, such as Fe and Na, detected by using PS and 

LIF are illustrated. In the case of atomic Fe (Figure 2-3 a-1), it is excited to the excited state 

(the red dash line) and emits radiation with different transitions. By selecting the transition 

different from that used to excite Fe atoms, the detection of atomic Fe in the environment 

with strong background noise may be achievable using LIF. For the detection of atomic Fe in 

welding arc, it requires a filter to eliminate the radiation emitted from plasma. 

Figure 2-3 Difference between techniques of  (a) LIF and (b) PS demonstrate the capability 
of suppressing strong background noise using PS. (a-1) Atomic Fe can be detected in other 
transition different from that used to excite Fe atoms using LIF. (a-2) The transition used to 
excite and detect atomic Na is identical. For PS measurement, two laser beams (two long red 
or short blue dash lines in b-1) are used to excite Fe or (two long red dash lines in b-2) to 
excite Na atoms and the polarisation variation is detected instead of the detection of 
fluorescence. Thus, the PS technique is capable of suppressing background noise. 
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For the case of atomic Na, the detection mechanism of LIF is simple, as shown in Figure 2-3 

a-2. The fluorescence of atomic Na possesses the same transition which is used to excite Na 

atoms. Hence, the detection of atomic Na in the volatile flames of burning solid-fuel particles 

becomes difficult to distinguish the scattering nosie from the fluorescence signals as the noise 

characterises at the same transition of atomic Na. 

For PS technique, two laser beams, namely probe and pump beams, are used to excite the Fe 

or Na atoms. The pump beam excites the Na atoms and the polarisation variation occurs while 

the polarised probe beam, which has the same wavelength, passes through the excited Fe or 

Na atoms. By detecting the polarisation variation of the probe beam, the intensity of PS signal 

can be detected. The two long red or short blue dash lines, as shown in Figure 2-3 (b-1), 

represent two persistent transitions of atomic Fe and two long red dash lines, as shown in 

Figure 2-3 (b-2), indicates the D1 line of atomic Na.  

2.2 Atomic Spectroscopy Overview  

2.2.1 Introduction 

Energy was considered as a continuum in classical physics. However, it is not always the case 

for certain experiments, such as the model of atom, determination of light speed, atomic 

spectroscopy and black body radiation etc. In 1900 Max Planck reported the revolutionary 

concept that energy can be described as discrete levels which only occur by means of 

allowable transitions between two distinct energy levels, as given by:  

                                                         hΔE=ν  

Eq. 2-14 
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where, ν is the frequency of radiation (Hz); ΔE is the energy for the allowable transition 

between two states (J) and h is the Planck’s constant, which is a universal constant 

(= sJ1063.6 34 ⋅× −  ). As shown in Figure 2-4, energy is absorbed or released while the 

allowable transition takes place. A beam with a single frequency is absorbed leading to 

excitation from Ei (initial energy state) to Ej (higher energy state). The excited state intends to 

stay in the initial state so that the absorbed energy is released. By collecting radiation of a 

beam with a broad range of frequencies, a term of white light, interacting with the target 

species, the absorbed energy shown in left side of Figure 2-4, demonstrates a dark area 

producing an absorption spectrum. On the other hand, if the energy is released as indicated in 

right side of Figure 2-4 reveal an emission spectrum. In atomic spectrum, the absorption 

spectrum is naturally complementary to the emission spectroscopy.  

The energy change being restricted to a finite value related to a frequency of radiation 

possesses characteristics of a specific atom or molecule which gives rise to applications of 

spectroscopy. By examining the wavelengths of radiation related to the energy change, 

therefore, it is feasible to determine the Na, K or Fe, in the case of this thesis, in the sample.  

Figure 2-4 Energy (ΔE) is used to excite the target species from the initial energy state (Ei) to 
a higher energy state (Ej). In other words, the energy, ΔE, is absorbed by the target species 
and excited to a higher energy state. The same amount energy, ΔE, released when the target 
species returns to the initial energy state can be detected. 
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The theory applied by Bohr to describe energy change in an atom from one state to another is 

feasible to be extended to describe the energy excitation or relaxation between states. Due to 

the fact of quantized energy levels, each state has a corresponding quantum number. However, 

the energy states of molecules or radicals need to be considered thoroughly. 

2.2.1.1 Electronic Energy 

Each atom characterises with a set of orbiting electrons. When an atom is excited owing to 

absorbing energy, electrons are excited to the higher energy states. This can be characterised 

by the principal quantum number, n, which can be considered to be the radius of the orbit 

where electrons suppose to be. It should be noticed that the distinct orbits can not be observed, 

which is described by the Heisenberg Uncertainty Principle, because the orbit is a descriptive 

concept. However, the energy levels characterised by quantum number are discrete with the 

values of n = 0, 1, 2, 3, 4..., which are represented X, A, B, C…, respectively.  

Since electrons of a molecule orbit the nucleus, it is necessary to consider the orbital angular 

momentum, l , which is characterised with 1...4,3,2,1,0 −= n    l . Not only is the 

consideration of electrons orbiting the nucleus, electron spin should be also taken into 

consideration with a corresponding spin quantum number, s. Regarding of the charge of the 

electrons for the orbital angular momentum in the confined states, the spin intends to 

characterise the preferred orientations which are described by the designated quantum 

numbers, smm   andl . Due to the insufficiency to describe each orientation only applying 

l and n , another symbol, λ , where lm≡λ , is conducted. However, it should be noticed that 

λ  does not account for the positive or negative values of lm  so that λ  states ought to be 

doubly degenerate. 

For the most of major situations involving more than one electron, a stated description of 

energy state can be represented by the total electronic orbital angular momentum quantum 
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number, Λ , as defined by: 

                                               ∑ ∑−=Λ
i i

i i
ml λ  

Eq. 2-15 

where, i indicates each constituent electron.  

The described state, Λ , are ....3,2,1,0    =Λ  associated with symbols corresponding to 

....,,, ΦΔΠΣ    , respectively. Then, the spin is further taken into consideration of the electronic 

designation, as described: Λ1S2 +n . An popular radical in combustion, as an example, OH 

whose electronic ground state is described as Π2X , where X represents the electronic ground 

state; the 2 superscript indicates the multiplicity (as 21S =  ) and Π  is the total electronic 

orbital angular momentum quantum number as 1=Λ . 

2.2.2 Boltzmann Populations 

The effective energy level of a molecule has been defined in the preceding section, each 

energy level correspond with a specific quantum number which is only appropriate to describe 

a single molecule. Within a gas, however, there are a lot of molecules which may not possess 

the same energy levels. It is possible to determine the fraction of the population exhibiting in 

the state ( i ), as denoted if  by the Boltzmann distribution, as presented by: 

                      )Texp(
q

kEgf ii
i

⋅−⋅
=  

Eq. 2-16 

where, gi is the degeneracy of state i; Ei is the energy of state i; k is Boltzmann’s constant; T is 

the absolute temperature in Kelvin (K) and q is the partition function. The q can be obtained 

by finding the total sum of all the population fractions, given by: 

                  )Texp(∑ ⋅−⋅=
i

ii kEgq  

Eq. 2-17 
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2.2.3 Collision Processes 

Collisions with other molecules can lead to variation in the energy level of the target species 

and hence the absorption and emission wavelengths will be altered. The energy transfer 

caused by collisions may be classified based on its effect. As to the electronic energy transfer, 

it changes the electronic states of the species. Quenching is a specific form of electronic 

transfer, where the species is returned to its electronic ground state without light emission. 

Due to the energy conversation, energy is transferred (lost from the excited species). Hence, 

quenching is generally considered to result from collision processes. However, it is still 

controversial. Moreover, the complexity introduced by collision processes, which causes the 

difficulty of the quantitative LIF, is a temperature dependent process. 

2.3 Combustion Process 

2.3.1 Premixed Methane Flame 

Combustion is a sequential process of exothermic chemical reactions of a fuel and an oxidant 

going with heat generation representing in the form of either glowing or a flame. In a 

complete combustion reaction, the compounds of a fuel react with an oxidizing element and 

thus the products are the gross compounds of the fuel and oxidizing element.  

In the fundamental combustion of premixed flames, two scenarios need to be considered 

when air or pure oxygen is used as an oxidant. Stoichiometric combustion with pure oxygen 

and hydrocarbon is represented in a general form, as presented below: 

     ΔH        OH)
2
y(COxO)

4
y(xHC 222yx +⋅+⋅→⋅++  

Eq. 2-18 
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For example, methane (CH4) is used, which is shown in the following equation: 

        ΔH        OH2COO2CH 2224 +⋅+→⋅+  

Eq. 2-19 

where, HΔ is the released energy. Carbon dioxide (CO2) is the only pollutant emission. In 

some circumstance combustion takes place with insufficient oxygen leading to emission of 

toxic gas, carbon monoxide (CO), as described in a general expression: 

ΔHOHy)(zC)CO(CO
3

xz2O)
2
y(xz2HCz2 222yx +⋅⋅+++⋅

⋅⋅
→⋅+⋅⋅+⋅⋅  

Eq. 2-20 

and the case of methane is shown as bellow: 

ΔH      OH12C2CO2CO2O9CH6 2224 +⋅+⋅+⋅+⋅→⋅+⋅  

Eq. 2-21 

In most industrial applications air is the major oxygen source and so stoichiometric chemical 

reaction is slightly modified, as shown in a general form: 

ΔH   N)
4
y(x76.3OH)

2
y(COx)N76.3(O)

4
y(xHC 22222yx +⋅+⋅+⋅+⋅→⋅+⋅++  

Eq. 2-22 

and a practical example of methane is obtained, as presented: 

ΔH       N52.7OH2CO)N76.3(O2CH 222224 +⋅+⋅+→⋅+⋅+  

Eq. 2-23 

The air-fuel ratio (AFR) for two cases of using oxygen and air as an oxidant are different and 

so the equivalence ratios (Φ). In the following section the detailed discussion of air-fuel ratio 

and equivalence ratio will be expounded. Moreover, as shown in equations introduced above, 

nitrogen is not involved in reaction. High temperature, however, could facilitate the formation 

of nitride (NOx) which includes nitrogen monoxide (NO) and nitrogen oxide (NO2), as 

presented in the following equation: 
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ΔH   NOCONOH2CONO2CH x222224 ++++⋅+→+⋅+  

Eq. 2-24 

In industrial power plants, therefore, NOx could be a potential issue to environment.  

2.3.2 Equivalence Ratio 

In the preceding section the global chemical reactions of premixed methane flame using air 

and pure oxygen have been introduced although the sequential reactions of premixed methane 

flame were not discussed. These reaction equations only pointed out the stoichiometric 

condition which the oxidant and fuel fully reacted. In order to define combustion conditions, 

the Air-Fuel Ratio (AFR) is introduced bellow: 

                                         AFR
fuel

oxy

fuel

oxy

Mass
Mass

Mole
Mole

==  

Eq. 2-25 

where, Moleoxy, Molefuel, Massoxy and Massfuel consecutively describe the molar and mass 

ratios of fed oxidizer and fuel. The value of AFR could be expressed differently by two 

definitions (as shown in Eq. 2-25) leading to difficulties in comparison of different conditions. 

This issue will be discussed later. 

AFR is a ratio of oxidizer-to-fuel in the combustion reaction. Combustion conditions can be 

defined by equivalence ratio (Φ) which is mathematically described as a ratio of actual and 

stoichiometric AFR (termed as AFRact and AFRstoi, respectively), as described below: 

            
AFR
AFRΦ
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−

==  

Eq. 2-26 

where Molestio-oxy and Molestoi-oxy are the molar ratios in chemical reactions, respectively, and 

Moleact-oxy and Moleact-fuel are respectively the molar ratios of fed gas reactants. Equivalence 
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ratio of 1.0 is at stoichiometry and thus rich and lean conditions are greater and less than 1.0, 

respectively.  

It is the advantage that equivalence ratio can avoid the issue mentioned in Eq. 2-25. By 

applying Eq. 2-25 in Eq. 2-19 to calculate AFRact with one mole of each reactant, for example, 

it shows two different values, as given below: 

         2
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Eq. 2-27 

It demonstrates the difference between two definitions of AFRact, as shown in Eq. 2-27, 

leading to different equivalence ratios. The AFRstoi is described below: 
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Eq. 2-28 

Therefore, the same equivalence ratio (defined by Eq. 2-26) can be obtained combining Eq. 

2-27 and Eq. 2-28, as shown below: 
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Eq. 2-29 

Hence, it is necessary that the calculation of Φ is performed under the unique definitions of 
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air and fuel. 

For the AFRact measurement in this thesis, the flowrates of air and fuel controlled by two mass 

flow controllers (MFC) were performed instead of mass or molar ratio. The AFRact of air and 

methane mixture in the following experiments was calculated using flowrates (L/min,). 

According to ideal gas law, the flowrate could be corrected, as detailed below: 

                 

4.22x
4.22xΦ

fuelact

oxy-act

fuel-stoi

oxy-stoi

act

stoi

Flowrate
Flowrate

Mole
Mole

AFR
AFR

−

==  

Eq. 2-30 

where, Flowrateact-oxy and Flowrateact-fuel respectively represent the actual flowrates of oxygen 

and fuel. In fact, the correction is not necessary while the mixture is considered as an ideal 

gas. Based on the Eq. 2-23 and Eq. 2-26, equivalence ratios employed in the following 

experiments were obtained.  

2.4 Calculation of Seeded Species in the Flames 

Conventionally the absolute concentration of a target species is achieved using absorption 

measurement. In flame media, the target species may exist in various forms. For example, 

sodium in the flames may be in the forms of atomic Na, Na2O or NaOH. Therefore, it is 

almost impossible to identify the absolute concentration of each form of target species without 

conducting the absorption measurement. For the convenience to establish calibration curves 

for the quantitative LIBS measurement, it is reasonable to determine the concentration of 

seeded target species by using the Ideal Gas Law in flame media. 

Assume that the rate of seeded salt (υm, g/s) is known, the molar flowrate of the target species 

(υms, mol/s) in the flame can be governed by: 
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Mυaυ mmms ⋅=  

Eq. 2-31 

where, am and M are molar ratio and atomic mass of the target species, respectively. The υm 

can be easily and simply determined by conducting a long term seeding experiement. The 

total gas flowrate (υf, L/s) at the flame temperature (Tf, K) can be obtained: 

rfagf TTυυυ ×+= )(  

Eq. 2-32 

where, υg and υa are the flowrates of fuel and air (L/s), respectively; Tr is the room 

temperature (K). Hence, the number density of the target species (mol/L or atoms/m3) can be 

obtained by dividing Eq. 2-31 with Eq. 2-32. To represent the concentration of target species 

in the dimensionless unit, part per million (ppm), the molar flowrate of total gas (υmf, mol/s) in 

the flame is given by applying the Ideal Gas Law: 

ffmf Tυυ ⋅⋅= RP  

Eq. 2-33 

Hence, the concentration of target species (Cseeding, ppm) is presented by: 

mfmsseeding υυC =  

Eq. 2-34 

2.5 Plasma Overview 

2.5.1 Introduction 

Plasma, a gas-like substance, contains various types of particles which are free electrons, 

cations and neutral substance. Since an electron is accelerated by electrical field to increase 

kinetic energy of the electron which collides with neutral particles, it may ionize the particle 
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to generate another electron. New electrons, based on the same scenario, will collide with 

more neutral particles leading to sequential generation of electrons. Plasma occurs while the 

electron density reaches the critical level. During the elastic and non-elastic collision 

occurring between electrons and neutral particles leading to energy transfer, while non-elastic 

collision takes place, most of electron energy is transferred to particles leading to excitation, 

ionization, relaxation and recombination. 

Due to the properties of the plasma, it was catalogued as the fourth phase of material 

compared to solid, liquid and gas phases. Ionization ratio which depends on the electron 

energy of the plasma is less than 0.001 per cent in the most of plasma applications and 1 per 

cent for high density plasma (HDP). In addition, the ionization ratio in the Sun is 100 per cent. 

Plasma possesses electrical conductivity and responds strongly under electromagnetic fields. 

Two type of ionized gas, owing to temperature levels, are marked as high and low temperature 

plasmas. Generally the temperature range of particles in high temperature plasma could reach 

10 million and up to 100 million Kelvin. High temperature plasma can be used to investigate 

nuclear fusion for energy purpose. As to low temperature plasma whose temperature is from 

thousands to dozens thousands Kelvin, it has been widely employed in various fields to 

improve technologies.  

2.5.2 Plasma Generation 

2.5.2.1 Methodology of Plasma Generation 

There are many techniques widely used to generate plasma for specific purposes, such as 

thermo-induced plasma, low pressure arc discharge, radio frequency discharge, laser ablation 

and welding arc et al [186], cataloged as low temperature plasma. Thermo-induced plasma 

generally indicates flames eligible to excite atoms or molecules. The excited species release 
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energy when jumping to lower energy state and thus spectra are observed. The low pressure 

arc discharge is operated under low pressure of chosen shielding gases, such as helium and 

argon, around 100 torr, to vaporize the anode substance and deposit forms in the cathode. The 

arc is induced by the electric field varied by the applied currents. This process is typically 

operated under the fixed voltage as the anode substance is consuming. By continuous feeding 

anode material [187], the arc plasma stably vaporizes target species depositing on the cathode. 

This method have been applied to produce fullerene (C60) [188] and carbon nanotube (CNT) 

[187, 189]. Radio frequency discharge operated under low pressure plasma which is generated 

by AC power has been widely applied to produce thin films on subtracts [190]. Laser beam 

focused on the target bulk is used to ablate target species forming thin films on the substrates. 

The focused laser beam leading to high energy density generates a plasma plume containing 

the vaporized target species (molecular forms) [191]. As to welding arc, it will be introduced 

in the following section. 

2.5.2.2 Gas Tungsten Arc Welding 

One of the common welding arc application, gas tungsten arc welding (GTAW), is similar 

with the low pressure arc discharge but is operated under atmospheric pressure. A welding arc 

is induced by the applied voltage, which is varied by the applied currents, while the constant 

voltage is performed in low pressure arc discharge. The GTAW process is most commonly 

utilized to weld thin sections of stainless steel and other metals, which are aluminum, copper 

and magnesium alloys. The buffer gas, such as helium (He), argon (Ar), nitrogen (N2), neon 

(Ne) or gas mixtures, dominates the resistances between the anode and cathode leading to the 

various current densities. Regarding the complexity of multi-parameters, it is difficult and 

complicated to control GTAW precisely [192]. For the purpose of application, the welding 

current is maintained constantly indicating the constant number density of iron can be 

achieved. 
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2.6 Thermogravimetric Analysis 

2.6.1 Introduction 

Thermogravimetric analysis or thermal gravimetric analysis (TGA) is commonly employed in 

research and testing to determine characteristics of materials such as polymers, to determine 

degradation temperatures, absorbed moisture content of materials, the level of inorganic and 

organic components in materials, decomposition points of explosives, and solvent residues. It 

is also often used to estimate the corrosion kinetics in high temperature oxidation measuring 

mass variation 

Thermogravimetric analysis (TGA) has been widely employed to predict and to model coal 

pyrolysis [136] and combustion [131, 193] and biomass pyrolysis [194, 195] and combustion 

[155, 196, 197] mechanisms. The pyrolysis and combustion mentioned here are meant to be 

the thermal degradation carried out under presence and absence of oxygen. 

TGA is also used to analyse kinetic properties of materials related to mass change in relation 

to temperature. Due to similarity of mass loss profiles, transformation with different purposes 

may require to interpret mass loss curves. Derivatives of mass loss profiles can be applied to 

reveal the critical temperature at which mass loss becomes dramatic. In this thesis, two 

solid-fuel particles, Australian Loy Yang Brown coal and pine wood pellets, have been 

employed for ultimate and proximate analysis, as shown in Table 2-1, analysed by HRL 

technology Ltd. The original test report and analysis standard are indicated in Appendix B.  

2.7 Error Analysis 

The potential sources of error typically common to all measurements in the experiments have 

been recognized in the following sections.  
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2.7.1 Laser Energy 

Daily adjustment of the laser energy has been conducted before experiments to reduce 

fluctuation of laser energy. For PS measurement, the energies of the Nd:YAG and dye lasers 

were maintained around 3.2 and 0.42 W, respectively. The variation of laser energy was 

experimentally determined to be 8%. As to variation of laser energy for LIBS measurement, 

the energy of fundamental wavelength, 1064 nm, was controlled by an attenuator. Hence, the 

variation for LIBS measurement was typically less than 5%.  

2.7.2 Flowmeters 

The flowmeters were used in Chapter 3 and Chapter 4. The flowmeter specifications list an 

accuracy of 2% with repeatability of 0.5% which was determined at full-scale reading. 

However, it is not always possible for all measurements so that the errors might be a little 

higher. Three types of rotameters (ABB Inc.), namely Flowrator Tube FP ¼’-25-G-5/81, 

Precision Tube ¾’-21-G-10/83 and Precision Tube ½’-21-G-10/83, have been utilised in 

Chapter 6. To determine the actual operation errors of flowmeters applied to control air and 

fuel flowrates, the errors were experimentally determined to be 8% for main air stream 

Table 2-1 Ultimate and proximate analysis of (a) Loy Yang coal and (b) pine wood particles 
analyzed by HRL Technology Pty Ltd (in Australia). 
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(Precision Tube ½’-21-G-10/83), 7% for seeding air flow (Precision Tube ¾’-21-G-10/83) 

and 4% (Flowrator Tube FP ¼’-25-G-5/81) for fuel flow. The major source of error is caused 

by the net force between the dragging force of floats and gas flow force. Therefore, the net 

force significantly varies with non-full-scale pressure leading to higher errors. Although it is 

possible that errors come from fluctuation of air and natural supply systems, the air and fuel 

were switched on 15 minutes before the experiments to stabilize the gas system. 

2.7.3 Mass Flow Controller (MFC) 

The mass flow controllers (MFCs) were used in Chapter 5 and Chapter 6 to control the 

flowrates of main stream air, seeding air and methane. The specifications specify accuracies 

of three MFCs for the adjustment of main stream air, seeding air and methane to be 0.47, 2.86 

and 0.69%. 

2.7.4 Variation of Solid-Fuel Particles 

Loy Yang Brown coal (23±3 mg, approximately spherical 3 mm diameter) from Vitoria 

Australia and pine wood particles (63±3 mg, approximately spherical 4 mm diameter), were 

used in the experiments of the thesis. Due to the variability of each solid-fuel particle, the 

variation between coal and wood particles can be considered in two aspects, the weight and 

volume. The volume variation was identified to be 8.4 and 3.5 % for coal and wood, 

respectively, using the approximate sphere calculation. The weight variation for coal and 

wood particles was obtained to be 13 and 4.8 %, respectively. This will cause the variation in 

the release of alkali species and the combustion timeframe. Due to the difficulty to determine 

the uncertainty of alkali metals released from burning solid-fuel particles using optical 

measurement techniques, it is reasonable to consider the variation as the uncertainty. However, 

to select weight variation is better than that of volume because the it is an approximation 
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determined using ICCD images. 

2.7.5 Nebulising System 

A nebulising system, as presented in Figure 2-5, was used to generate salt solution droplets, 

which were entrained into flames. The stability of nebulising system is performed by the 

seeding air flowrate using the flowmeter (Precision Tube ¾’-21-G-10/83) with the error 7% or 

by the MFC with the error 2.86%. The error of the seeding solution flow using the flowmeter 

and the MFC were experimentally determined to be 8.14 % and 4.17%, respectively, by 

conducting the long term seeding process. By measuring the difference of the consumed salt 

solution before and after four hours, the average consumption of seeding salt solution was 

experimentally obtained. Moreover, this seeding process was repeated three times to evaluate 

the variation of the nebulising system.  

Figure 2-5 A seeded flame system comprises (A) a burner, (B) a nebulising system and a gas 
and fuel supply system. A nebuliser (C) is used to generate salt solution droplets, which are 
entrained into a flame. 
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CHAPTER 3.  

Assessment of Polarisation Spectroscopy in 

Atomic Sodium Detection 

3.1 Introduction 

This chapter describes how the ability of laser Polarisation Spectroscopy technique (PS) to 

detect atomic Na in two types of environments was assessed. In the first experiment, a 

well-defined sodium concentration seeded into the premixed laminar methane flames was 

studied. In the second experiment, the PS technique was applied to detect atomic Na released 

in a plume produced by the burning of solid-fuel particles. 

The first experiment was designed to decouple the dependencies associated with the PS 

detection process. The PS signal level is influenced by several physical and chemical factors: 

pump beam fluences, wavelength dependence, seeded population of Na atoms and flame 

conditions. In the second experiment, the PS technique was applied to detect the 

time-resolved records of atomic Na released from burning solid-fuel particles at a single 

wavelength. 
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3.2 Experimental Arrangement 

3.2.1 Laser Diagnostic System 

The experimental arrangement (Figure 3-1), consisted of a laser system (Nd:YAG pumping a 

dye laser) synchronized with an intensified CCD camera (ICCD camera, Princeton 

Instruments, ICCD-576-G/RB-E) operated at 20 nano-seconds (ns) gate width and 35 ns gate 

delay, a premix laminar burner and a nebuliser seeding system. The probe and pump beams 

were located 10 mm above the burner in the case of seeded flames, as shown in Figure 3-1. 

For the case of burning solid-fuel particles, the laser beams were located 10 mm above the 

particles. To unify the metal detection in the flame media, the 10 mm height was employed 

throughout the experimental process. The laser system consisted of a tuneable dye laser 

(Lambda Physik Scanmate) pumped by a Nd:YAG laser (Coherent Brilliant B) synchronized 

with the ICCD system, as presented in Figure 3-2. The powers of radiation output for the 

Nd:YAG and the dye lasers were maintained at 3.2 ± 0.5 and 0.42 ± 0.02 W with 10 Hz 

repetition (320 mJ/pulse and 42 mJ/pulse), respectively. The line width and the duration of the 

Figure 3-2 Schematic diagram for the synchronization of the laser and an ICCD systems 
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tuneable output were specified to be 0.08 cm-1 and 7 ns, respectively. The pulse-to-pulse 

energy jittering of the output radiation was measured to be 14% with 100 shots at the 

wavelength of 589.592 nm (D1 line). Three beam splitters (BSp) were used to generate four 

beams, as shown in Figure 3-1, which are the pump beam (Bpump), probe beam (Bprobe), 

reference beam (Bref) and absorption beam (Babs). The Bref provided the instantaneous 

correction for the jitter in laser power. The Babs was used to perform a simultaneous 

absorption measurement, a quantitative measurement of atomic Na. 

Both the Bpump and Bprobe were tuned to the same optical transition of the target species 

(one-colour PS). A small change in the polarisation of the Bprobe can be detected by applying 

two Glan Taylor polarisers (extinction ratio ~ 5×10-6) in the probe beam path, enclosing the 

region of optical pumping. To unify the properties of the Bprobe and Bref, two crossed Glan 

Taylor polarisers were also applied in the reference beam path, as presented in Figure 3-1. 

The intersection angle between Bpump and Bprobe in the experimental arrangement was 

calculated to be 5.6˚.  

The Bprobe was linearly polarised and the Bpump could be either linearly or circularly polarised. 

For the linearly polarised Bpump, the two components were set to be equally parallel and 

perpendicular to the polarisation direction of the Bpump. For the circularly polarised Bpump used 

here, the linearly polarised Bprobe was equally decomposed into right and left circularly 

polarised components. A detailed arrangement of the quarter-wave plate (QwP), which was 

applied to achieve appropriate circular polarisation of the Bpump, was described in Figure C-1 

(in Appendix C). 

3.2.2 Power Dependence 

The power of the Bpump was measured before the flames to identify the energy loss caused by 

the optics absorption and by the energy diverged to form the Bprobe, which was experimentally 

determined to be 66 ± 0.5 % of the initial laser power (42 mJ per pulse). The Bpump was 
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focused by a spherical lens (500 mm focal length). The area of the focused laser beam 

resulted from the diameter of the focused pump beam based on the diffraction limit, governed 

by: 

0LP DλfD ⋅⋅= 27.1  

Eq. 3-1 

where, DP is the diameter of the focused pump beam dot, fL is the focal length, λ is the 

wavelength of the laser (589.592 nm for atomic Na in the D1 line) and D0 is the diameter of 

the input laser beam (0.2 cm in this work). Hence, DP was calculated to be 18.72×10-3 cm, i.e. 

the area was 2.75×10-4 cm2. Hence, the fluences of the Bpump were obtained by using laser 

beam power divided by the dot area. The fluence of the Bpump was later varied by four ND 

filters to provide fluences ranging from 6.36 to 1.00 GW/cm2, as shown in Table 3-1. 

The energy of the Bprobe was generally very weak, less than 5% of the Bpump energy in the 

experimental arrangement. Because the ICCD camera detects the Bprobe and Bref directly, the 

powers of two beams were too strong that could damage the ICCD camera. Two thin film 

polarisers (TFP) were used to reduce the intensities of the Bprobe and Bref to protect the ICCD 

camera and also to adjust the powers of the Bprobe and Bref. Although the Babs was also directly 

Table 3-1 Pump beam fluences (GW/cm2) applied in the detection of atomic Na using PS 
were listed. The theoretical values of the laser powers were obtained by using the laser 
energy multiplied by the transmittances of the ND filters. The measured values of the laser 
powers were obtained directly after the ND filters. 
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introduced into the ICCD camera, the power of the Babs has been adjusted to protect the 

camera. Due to the sensitivity of the power meter, it is too low to measure the power of the 

Bprobe. Hence, the intensity of the Bprobe was represented using the value of the ICCD count 

(the maximum was about 70 ± 10 counts) to maintain the consistent experimental conditions. 

3.2.3 Premixed Laminar Burner 

Two types of the laminar burners were used for the current study. Rich flames were generated 

using the premix laminar burner, while lean flames were produced using van Eyk’s Diffusion 

Burner [11]. 

3.2.3.1 Rich Flame in the Premix Laminar Burner 

The rich flames were generated using the premix laminar burner illustrated in Figure 3-3, to 

provide a stable and geometrically symmetrical environment. It should be noted that the term, 

‘stable flame’, represents the un-lifted flames. Detailed drawings of the burner are provided in 

Figure A-1. A stable flame environment is crucial for conducting quantitative measurement. 

The honeycomb of the burner is made of Aluminium Oxide (Al2O3) making it difficult to 

remove residues from the surface of the burner due to the porous surface of Al2O3. The 

residues are thermally released into the premixed laminar flames, leading to contamination 

when the premixed flames directly attach to the top of the burner. To maintain the flame 

stability of premixed laminar flames and avoid contamination, the flames were operated right 

above the top of the burner. Allowing for the burning velocity of Australian natural gas, the 

designated flames could only be operated between the equivalence ratios of 1.3 and 1.4.  

To perform the equivalence ratio of 1.3, the flowrates of the air and methane were controlled 

by two flowmeters set at 92.25.36 ±  (ABB Precision Tube ½’-21-G-10/83) and 2.05 ±  

L/min (ABB Flowrator Tube FP ¼’-25-G-5/81). For the equivalence of 1.4, the flowrates of 
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the air and methane were set to be 67.23.33 ±  and 2.05 ±  L/min. 

As shown in Figure 3-3, air, fuel and seeded fine droplets of salt solution were premixed in 

the mixing chamber to reduce the fluctuation of the flowrate of the gaseous mixture created 

by the condensed seeding droplets. The salt solution was nebulised using an ultrasonic 

nebuliser to generate nominally 1 μm diameter salt droplets, which is governed by [198]: 

3
1

834.0 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅
⋅

⋅=
N

SD fρ
ψD π  

Eq. 3-2 

where, DSD is the median diameter of the salt droplets (μm), fN is the exciting frequency of the 

ultrasonic nebuliser (MHz), ψ is the surface tension of water (mN⋅m-1) and ρ is the density of 

water (kg⋅m-3).  

Figure 3-3 Schematic structure of the premix laminar burner; the two-layer structure consists 
of the honeycomb and the co-flow (top layer) and a premixed chamber (bottom layer). The 
seeded droplets were entrained from the bosses near the bottom and the outlet is utilized to 
drain out the excess condensed salt solution.  
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The flowrate of the seeding air is 5 ± 0.35 L⋅min-1 determined by a flowmeter (ABB Precision 

Tube ¾’-21-G-10/83). Therefore, the consumption rate of the salt solution was experimentally 

determined to be 40 ± 0.3 ml⋅hr -1. The consumption rate then was used to estimate the total 

number density of Na atoms seeded into the flames using Eq. 2-31 divided by Eq. 2-32. The 

result of the calculation is used to provide a reference concentration to verify the number 

density of atomic Na obtained using absorption spectroscopy. The three concentrations of 

sodium carbonate (Na2CO3) in wt%, namely 0.5, 1 and 5 g/L, seeded into the flames, were 

mathematically and physically converted into a concentration (part per million, ppm), as 

presented in Table 3-2, based on the constant salt consumption rate using Eq. 2-31 ~ Eq. 

2-34. 

3.2.3.2 Lean Flame in the van Eyk’s Diffusion Burner 

To perform the lean laminar methane flames, a van Eyk’s diffusion burner was used (Figure 

3-4) [11-15]. The detail of the burner has been described in Ref. [11]. The particular design 

used in this study is presented in Figure 3-5. Each fuel port is hexagonally surrounded by six 

air ports. Hence, the fuel and air were not premixed before combustion. A separate air shroud 

surrounds the central burner and is used to stabilize the flame and to prevent puffing. 

Although diffusion flame allows much wider range of stoichiometries to be generated, it 

Table 3-2 Total seeded [Na] with the constant seeding air flowrate of 5 L/min was calculated 
using Eq. 2-31 ~ Eq. 2-34. The seeding air flowrate was included in the total air flowrates. 
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should be mentioned that the mixture fraction is not completely developed. Nevertheless, the 

mixture fraction becomes reasonably developed at a short distance (here 10 mm) above the 

burner matrix. 

3.2.4 Data Acquisition and Processing 

The optical layout was configured to allow the ICCD camera to record three laser beams 

simultaneously, namely Bprobe, Babs and Bref (as introduced in Figure 3-1), as presented in 

Figure 3-6, providing comprehensive information of atomic Na in the flame. The beams were 

located in three areas, termed as the zones of PS, Absorption and Reference, as indicated in 

Figure 3-4 Schematic structure of the van Eyk’s diffusion laminar burner, which is used to 
provide well-defined laminar flame environments with lean conditions (all lengths in mm) 
[11]. The measurement was carried out 10 mm above the burner, which is considered to be 
the zone of the premixed flame. 

Figure 3-5 Hexagonal structure of fuel and air ports; each fuel port surrounded by six air 
ports generates premixed laminar methane for lean conditions. 
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Figure 3-6.  

The image size varies from shot to shot indicating that the PS intensity of the atomic Na 

extrapolated from each image is different. The variation resulting from the size of the chosen 

pixel array is therefore expected. To reduce the fluctuation caused by energy jitter in the 

beams and by variable beam steering effect, it is necessary to determine the experimental 

intensity of PS signals of atomic Na (IPS) in a chosen pixel array (n×n matrix) instead of 

averaging the intensity within the whole beam area (approximately 150×150 pixels). The 

imaging process in the chosen n×n matrix (n2 pixels) was performed using Matlab 7.0 to 

demonstrate the variation in the experimental intensity of atomic Na. To optimize the 

dimensions of the chosen pixel array (n×n matrix), the errors among n×n matrices were 

investigated, as shown in Figure 3-7. The error becomes significant when n is larger than 11. 

Hence, the 9×9 matrix was chosen to determine the IPS of atomic Na. The same image 

processing using Matlab 7.0 was conducted to achieve the average intensities of Babs and Bref. 

Figure 3-6 The three types of signal recorded in three locations of a single ICCD detector: (a) 
PS signal detects the concentration of atomic Na. (b) The absorption measurement is used for 
the quantitative measurement of atomic Na in the seeded flame. (c) The Bref provides the 
instantaneous correction for the laser power. (a-1) and (b-1) show the intensities of Bprobe and 
Babs, respectively, operated in the unseeded methane flames. (a-2) and (b-2) demonstrate the 
intensities of Bprobe and Babs, respectively, performed in the Na seeded methane flames. The 
Bref in (c-1) and (c-2) bypasses the methane flames and remains constant.  
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The n×n matrix is centred on the pixel array with maximum intensity. The IPS in the chosen 

pixel array is obtained by averaging the intensities in each pixel. Details of the Matlab codes 

used to process the images of Bprobe, Babs and Bref are provided in Appendix I-1. The IPS of the 

chosen 9×9 pixel array is indicated in Figure 3-8. The red dot represents the pixel with the 

maximum intensity. The red dot among the pixels in each ICCD image was determined by 

sorting the pixel array in two dimensions.  

Figure 3-7 Errors and Root-Mean Square (RMS) of n×n pixel arrays show the variation of 
IPS among n2 pixels. The values of n were examined from 3 to 99. The error significantly 
increases when n = 11. 

Figure 3-8 Illustration of image processing: 9×9 pixel array is centred on the instantaneous 
pixel (the red dot ●), in which is the strongest intensity of the chosen matrix. This varies from 
shot to shot. 
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3.3 Results and Discussion 

3.3.1 Fitting of PS Lineshape 

The lineshapes of atomic Na with various experimental conditions using PS have been 

obtained from the wavelengthscan. While Eq. 2-13 provides a valid description of PS 

lineshapes for minor species, it is necessary to account for the nonlinear PS and linear 

absorption signals when PS measurement is used to detect a highly populated species, as 

indicated in Figure 3-9. The generation of PS signals occurs in the interaction zone shown as 

a shaded grey region, labelled ‘a’, where the probe and pump beams cross (the blue dash in 

Figure 3-9). The probe beam, carrying the PS signal (the variation of polarisation) continues 

through the flame line along the path, labelled ‘b’ where is it subjected to absorption (the red 

dash in Figure 3-9). The significant absorption increases with the population of the target 

species. This indicates that a highly populated sample results in significant absorption for a 

PS measurement, a fact which needs to be taken into account in the PS lineshape.  

General absorption, [G(ω) mentioned in Eq. 2-12] occurs in the intersection area, a, in Figure 

3-9 when the PS signal is generated. The particular absorption in the current study, however, 

was caused by the flame and G(ω) was negligible. The absorption occurring in IPS(ω) was 

Figure 3-9 The PS signal consists of pure PS and absorption signals in highly populated 
media: a: Probe/Pump beams interaction length (LPS), b: Probe beam absorption length (Labs) 
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analysed using the Beer-Lambert law and the experimental PS lineshape could be determined 

by extending Eq. 2-13 to account for the absorption [114] which is described by a Lorentzian 

function, governed by: 
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Eq. 3-3 

where, )(ωI exp
PS  is the experimental PS signal; Labs is the absorption path length of the Bprobe 

(m); [Na] is the number density of atomic Na in the seeded flame and PSωΔ  is the 

combination of three broadening widths, which are natural linewidth (Δωn, cm-1), the 

self-broadening (Δωself, cm-1) caused by the target species itself and collisional broadening 

(Δωcollision, cm-1) caused by other species in the sample media, as described in the Ref. [18]. 

The Iabs(ω) is an absorption function with respect to the transition (ω) of whichever lineshape 

is governed by the Lorentzian function. In the current study, the individual broadening width 

was not evaluated directly but the combination of broadening widths could be obtained from 

the PS lineshape. 

Looking again at Eq. 3-3, the Iabs(ω) should be addressed by considering the IPS(ω) in the 

absorption regime. The lineshape of IPS(ω) in the absorption regime is different from that in 

the PS regime. This indicates that the lineshape of IPS(ω) in the absorption regime is 

dominated by the absorption Lorentzian function. The absorption of IPS(ω) inside the seeded 

flame is governed by the Beer Lambert Law. To mathematically and physically describe the 

absorption profiles, The Eq. 3-3 is insufficient for the Beer Lambert Law. Therefore, Eq. 3-3 

can be expressed as follows: 
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where, Δωabs is the FWHM of atomic Na in the absorption regime. It should be noted that the 

absorption that occurred after the probe beam, Iprobe(ω) passed through the seeded flame, as 

illustrated in Figure 3-9, was not considered in Eq. 3-4 due to the physical complexity. 

A red dashed line is used to approximately describe the experimental PS linshape in Figure 

3-10. Using the Marquardt’s algorithm [199], a modified equation based on Eq. 3-4 that 

incorporates the absorption of the probe beam can be employed to calculate the six parameters 

introduced in Figure 3-10. See the following equation: 
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Eq. 3-5 

where, the first term of Ibaseline is the background (baseline); Δω is the wavelength different 

between the selected transition and the central transition; IPS(ω), PSωΔ  and shiftωΔ  are 

related to the PS signals; Iabs(ω) is the absorption function of the PS signal occurring in the 

flame represented in the third term of Eq. 3-5. The absωΔ  is used to describe the absorption 

line width. The second and the last parts of Eq. 3-5 are the intensities of PS and absorption 

signals, respectively; the PSωΔ  and absωΔ  are FWHM of nonlinear PS and linear 

absorption signals, which account for the collisional width; the shiftωΔ  is the wavelength 

offset (detuning) between the central transition and PS wavelengthscan results. Due to the 

shift caused by collision (Na atoms collide with any gaseous species in the flame), the shiftωΔ  

is used to account for the collisional shift present in some lineshapes of atomic Na.  
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By applying Eq. 3-3 and Eq. 3-5, the number density of atomic Na may be extracted from 

IPS(ω) or Iabs(ω) during the fitting of the wavelengthscan results because IPS(ω) and Iabs(ω) are 

the consequences of the number density of the target species, atomic Na in this case. A 

comparison of Eq. 3-3 and Eq. 3-5 shows that IPS(ω) and Iabs(ω) are proportional to [Na]2 and 

absL⋅⋅− ]Na[)(e ωσ , respectively. The PS technique is therefore nonlinear because the PS intensity is 

proportional to [Na]2. 

The wavelengthscan of atomic Na using PS allows the direct measurement of the 

concentration of the target species in the seeded flames. However, this requires the constant 

concentration of the target species in the flame media throughout the scan. This method is, 

therefore, only suitable for steady flames, or for those for which the time-scale of variation is 

small compared with temporal variations in a flame. For solid-fuel particles of ~ 4 mm 

diameter, the scan-time is much longer than the burn-time, which lasts up to several minutes. 

Figure 3-10 Schematic description of PS lineshape (a-3 and b-3), comprising pure PS (a-1 
and b-1) and absorption (a-2 and b-2) signals; Ibaseline is the baseline of pure PS lineshape; IPS 
and Iabs are the maximum intensities of pure PS and absorption signals, respectively; PSωΔ  
and Δωabs are FWHM of pure PS and absorption signals. (b-1) Δωshift is the detuning width 
occurring in the PS lineshape. 
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A fast-wavelengthscan laser system, therefore, is able to achieve the lineshape scan within a 

certain range of wavelengths in microseconds [200-203]. The wavelengthscan of atomic Na in 

the seeded flames using PS is reliable because the atomic [Na] in the media is relatively 

constant with the scan-time. Under the conditions, it is possible to obtain reliable results for 

the concentration of atomic Na from the wavelengthscan data. 

A calibration process for the PS of atomic Na was performed by applying the simultaneous 

absorption measurement to a chosen wavelength, as presented in Figure 3-1. It should be 

noted that the intensities of the chosen atomic or molecular transitions were not proportional 

to the population densities of the target species due to the significant absorption present, as 

described in Figure 3-10. This indicates that the chosen wavelength (transition) is not always 

appropriate for the detection of the target species when attempting to use a single wavelength 

for the PS measurement. The chosen wavelength is only valid within a certain range of 

population levels of the target species. 

3.3.2 Saturation Curves 

To obtain quantitative PS measurements, it was necessary to perform PS within the saturation 

regime [16, 204], as presented in the following equation: 
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Eq. 3-6 

where, IPS is the intensity of the measured PS signal, Ipump is the pulse fluence of the pump 

beam, PS
SatI  is the saturation pulse fluence of pump beam and η is a scaling factor. As 

described in Section 3.3.1, the D1 line of high population atomic Na suffered from severe 

absorption in the central transition. To detect minor species in the flame media, the chosen 

wavelength might be the transition due to the negligible absorption in IPS. It is therefore 
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difficult to carry out quantitative detection of highly populated species using a single 

wavelength. However, it is reasonable to select a particular wavelength for the detection 

within a certain range of concentration of atomic Na in the saturation regime. 

Figure 3-11 shows the saturation curves for the chosen wavelength, 589.590 nm, under 

various concentrations of seeded [Na], namely 1.503, 2.254 and 3.757 ppm (or 0.5, 1 and 5 

g/L). The concentration of seeded [Na] was calculated using Eq. 2-31 ~ Eq. 2-34. Under the 

constant seeding rate of salt droplets, the concentration of salt droplets can be represented as 

the uniform concentration of seeded [Na] distributed within the flames. The saturation 

fluences of pump beams ( PS
SatI ) extracted from those saturation curves are described using Eq. 

3-6 as the base and Marquardt’s algorithm [199] (Table 3-3). The coincidence result of the 

first two population levels is about 1.5 ± 0.5 GW/cm2 and with the last is about 1.38 ± 0.37 

GW/cm2, consistent with the seeded [Na]. This indicates the feasibility of the quantitative PS 

measurement employed on the target species at one specific wavelength. Due to the 

Figure 3-11 Saturation curves of PS measurement in the flames seeded with salt droplets of 
(a) 0.5 g/L (red dots and line) (b) 1 g/L (green dots and line) (c) 5 g/L (blue dots and line) 
with various fluences of the pump beam; each datum point is the average of 50 single-shot 
results. The solid lines are the best-fit (based on Eq. 3-6) for determining the saturation 
fluences. The best-fit is based on the first five data points. The variation between the best-fit 
and PS intensities at high fluences (the rest of the dot symbols) are estimated to be 20 %. 

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7

P
S

 In
te

ns
ity

 (a
.u

.)

Fluence(GW/cm2)



Ph. D. THESIS_SCHOOL OF CHEMICAL ENGINEERING_THE UNIVERSITY OF ADELAIDE 

68 

significant variation in the higher fluences, the best-fit of saturation curves were obtained 

using the first five points. The variation between the best-fit and PS intensities in higher 

fluences (the rest of the points in Figure 3-11) was estimated to be around 20 %. This 

demonstrates that excess fluence can lead to a lower PS intensity, especially for a low number 

density target species. 

3.3.3 Lineshapes of Atomic Na in Polarisation Spectroscopy 

The population densities of seeded Na directly affect the intensities of PS and absorption at 

the scanning wavelength, as described in Eq. 3-5. The absorption becomes stronger at the 

higher concentrations of seeded salt droplets leading to the significant absorption at the 

central wavelength (transition). The experimental PS lineshapes result from the superposition 

of nonlinear pure PS and linear absorption signals. Hence, two peaks can be observed in the 

experimental PS profiles [Figure 3-12 (b), (c), (e) and (f)] when the effects of absorption are 

as significant as the single peaked lineshape, as occurs in Figure 3-12 (a) and (d), indicating 

that the influence of linear absorption on the PS signal is weak. It is clear that the absorption 

becomes significant in the highly populated media. 

In order to simulate the wavelengthscan results using Eq. 3-5, the raw PS intensities in Figure 

3-13 ~ Figure 3-19 were normalised by the maximum intensity in the individual 

wavelengthscan result and multiplied by a factor of 150 (can be a radom number). Figure 

Table 3-3 The saturation fluences for the pump beam were obtained from the PS 
measurement under three concentrations of total seeded Na at the equivalence ratio of 1.3 
using Eq. 3-6. The total seeded [Na] was determined by using the method introduced in 
Section 2.4. 
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3-13 presents the calculation results of Figure 3-12 based on Eq. 3-5 showing the good 

agreement with the lineshapes of atomic Na. A particular phenomenon was observed during 

this process: the right-shift [Figure 3-12 (b) and (e)] and left-shift [Figure 3-12 (c) and (f)] of 

the central absorptions occurred in a certain range of concentrations. The shift was obtained 

from the calculation of lineshape results by extracting the Δωshift from Eq. 3-5. The right-shift 

occurred in concentrations of about 2 ppm and the left-shift was observed in concentrations of 

about 4 ppm (the concentrations in detail are listed in Table 3-1 and Figure 3-12).  

The explanation for the right- and left-shift is not yet clear. It might be caused by the collision 

altering the PS signals. However, the shift caused by major perturbers in D1 and D2 lines of 

atomic Na in the flame media, namely Ar, H2, H2O, N2 and CO/CO2 has been determined as 

negative (right-shift) [205]. Hence, this requires further investigation both theoretically and 

experimentally to verify the shift results of atomic Na in the D1 line.  

Figure 3-12 PS lineshapes with the pump fluence 6.36 GW/cm2 while Φ = 1.3 with [Na] = (a) 
1.503 (b) 2.254 (c) 3.757 ppm; Φ = 1.4 with [Na] = (d) 1.628 (e) 2.443 (f) 4.071 ppm. The 
concentrations of seeded [Na] were calculated using Eq. 2-31 ~ Eq. 2-34. 
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The absorption see ms more significant with the higher concentrations of seeded Na 

indicating that with the FWHM of absorption, Δωabs in Eq. 3-5, becomes wider. This will be a 

problem when Δωabs dominates ΔωPS leading to a wider range of wavelengths for the 

vanishing IPS. Hence, the chosen transition may not be always applicable for the detection of 

[Na] in the PS measurement.  

To measure concentrations of the target species using PS requires careful planning of the 

experimental arrangement. Generally, there are two scenarios able to achieve quantitative 

measurement using PS. These are the development of conventional calibration curves and 

extraction from the simulation of wavelengthscan results using Eq. 3-5.  

A conventional calibration curve requires a particular wavelength at which the intensities are 

measured, corresponding to the concentrations in the sample media. However, the chosen 

wavelength is not always applicable for highly populated sample media. The wavelength may 

Figure 3-13 Best-fit of PS lineshapes based on Eq. 3-5 indicate the absorption overpowers 
the PS signals resulting in two-peak shapes. Φ = 1.3 with [Na] = (a) 1.503 (b) 2.254 (c) 3.757 
ppm; Φ = 1.4 with [Na] = (d) 1.628 (e) 2.443 (f) 4.071 ppm with the pump fluence 6.36 
GW/cm2.  
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be achievable if a database containing the PS intensities at a certain range of wavelengthscans 

corresponds to the concentrations of target species under various fluences of pump beam. 

Such a database requires much more work in the future. To avoid the difficulty of calibration 

curves, the concentration of target species in the sample media might be able to be extracted 

from the wavelengthscan results simulated by Eq. 3-5. Some groups have used a 

diode-laser-based device to achieve a fast wavelengthscan in the detection of OH radicals 

[201, 203]. 

As measured in Figure 3-13, both quantitative measurements of atomic Na may not be 

applicable. Although it is possible to extract concentrations from the wavelengthscan data 

using Eq. 3-5 without conducting a calibration process, the IPS is not proportional to the 

number density of atomic Na. More effort to achieve quantitative measurements using PS in 

seeded flames is required in the future. 

Figure 3-14 Lineshapes of IPS wavelengthscan into the seeded flame for concentration of Na 
of 1.503 ppm and Ф = 1.3 were performed with fluences of (a) 6.36, (b) 3.18, (c) 2.01, (d) 
1.00 GW/cm2. 
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3.3.4 Fluence Dependence of the Pump Beam 

The energy of the pump beam was controlled by various neutral density filters (ND filters) to 

provide various fluences at a point with an 18.72×10-3 cm diameter (the area is 2.75×10-4 cm2). 

Due to the nonlinear PS measurement [16, 24], the saturated PS signal was critical for the 

quantitative analysis. The saturated PS signal indicated that the intensity of PS did not vary 

with the pump beam fluences under the saturated regime. Moreover, the critical fluence varied 

with the number density of the target species, as shown in Table 3-3. Therefore, the results of 

fluence dependence under various populated levels of atomic Na could be investigated. 

The wavelengthscan lineshapes of PS intensities for various concentrations of seeded Na 

droplets were investigated for Φ = 1.3 as presented in Figure 3-14 to Figure 3-16 and for Φ = 

1.4 in Figure 3-17 to Figure 3-19. The equivalence ratio is dominated by the flowrates of air 

and methane. Based on the same flowrate of methane, a richer condition was achieved by 

reducing the flowrate of air. The higher concentration of seeded Na, therefore, occurred in the 

Figure 3-15 Lineshapes of IPS wavelengthscan into the seeded flame for concentration of Na 
of 2.254 ppm and Ф = 1.3 were performed with the fluences of (a) 6.36, (b) 3.18, (c) 2.01, (d) 
1.00 GW/cm2. 
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richer condition. Although a higher concentration of seeded Na was achieved, it was not the 

only factor that induced the stronger intensity of atomic Na. The intensity of atomic Na was 

expected to be stronger in the flame media with richer conditions under the same seeded 

concentration of Na. Therefore, the IPS of atomic Na with a higher number density of H atoms 

was induced by hydrogen reduction [15, 38]. The H atoms in this study were supplied by the 

decomposition of CH4(g) instead of from H2(g). However, H atoms play the same role in 

hydrogen reduction, as illustrated below: 

)g(2)g()g()g(2

)g(2)g()g()g(

OHNa2H2ONa

OHNaHNaOH

+↔+

+↔+
 

Eq. 3-7 

The tests recorded in Figure 3-14 to Figure 3-16 were conducted at the equivalence ratio of 

1.3, leading to concentrations of 1.503, 2.254 and 3.757 ppm, and the fluences of 6.36, 3.18, 

2.01 and 1.00 GW/cm2 were performed. Eq. 3-5 was used to model the IPS(ω) of atomic Na in 

the seeded flames. Figure 3-14 (a) is modelled with the saturated PS (n = 1, in Eq. 3-5). With 

Figure 3-16 Lineshapes of IPS wavelengthscan into the seeded flame for concentration of Na 
of 3.757 ppm and Ф = 1.3 were performed with the fluences of (a) 6.36, (b) 3.18, (c) 2.01, (d) 
1.00 GW/cm2. 
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the decreasing pump beam fluences, the absorption (in the third part of Eq. 3-5) dominated 

the pure PS signal (the second part of Eq. 3-5) revealing a lineshape similar to that 

represented in Figure 3-13. It was notable that the left-shift occurred in the PS 

wavelengthscan data as the pump beam fluences decreased, indicating the non-zero Δωshift in 

Eq. 3-5 had been reached. 

Figure 3-15 demonstrates the PS lineshapes with scanning wavelength and various pump 

beam fluences at the entrained Na concentration of 2.254 ppm. Unlike the profiles shown in 

Figure 3-14, the absorption was significant, as illustrated in Figure 3-15(a). The absorption 

became increasingly significant as the pump beam fluences decreased, as indicated in Figure 

3-15 (b) ~ (d). The solid green line represents the modelling result using Eq. 3-5, showing the 

good agreement with the experimental results. In addition, the peculiar phenomenon of the 

right-shift occurred. The similar tendency was also recorded in Figure 3-14 with the left-shift.  

The PS profiles under the seeded [Na] of 3.757 ppm with various fluences were conducted, as 

shown in Figure 3-16. The absorption possesses excessively strong, leading to the 

‘deep-canyon’ lineshape in the central wavelength. Two particular phenomena were observed 

Figure 3-17 Lineshapes of IPS wavelengthscan into the seeded flame for concentration of Na 
of 1.628 ppm and Ф = 1.4 were performed with the fluences of (a) 6.36, (b) 3.18, (c) 2.01, (d) 
1.00 GW/cm2. 
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in the profiles, as presented in Figure 3-16. One is the similar trend observed in Figure 3-14 

and Figure 3-15, which is the occurrence of the left-shift. The other is the broadened FWHM 

of pure PS signal results from the self-collisional broadening [24], compared to the results 

obtained under lower concentrations of seeded Na. 

In the case of Ф = 1.4, due to the stability of the flame, an anomaly occurred in some results 

for the PS lineshapes. However, the major tendency was consistent with that in the case of Ф 

= 1.3. The lineshapes, as shown in Figure 3-17 and Figure 3-19, except for the anomaly in 

Figure 3-17 (b), demonstrate the consistent behaviours, which are the left-shift and 

absorption effect, observed in Figure 3-14 and Figure 3-16. The right-shift that occurred in 

Figure 3-18 was consistently observed in Figure 3-15, except for the anomaly in Figure 3-18 

(d). Moreover, the broadening profiles were also observed in Figure 3-19, as highlighted in 

Figure 3-16. As the lineshapes of atomic Na using PS demonstrate, the profiles are highly 

dependent on the pump beam fluences, as reported by [17, 113]. 

The mechanism of right- or left-shift is not yet clear. However, the shift behaviour was 

consistently observed at both equivalence ratios, 1.3 and 1.4. However, it seems that the shift 

Figure 3-18 Lineshapes of IPS wavelengthscan into the seeded flame for concentration of Na 
of 2.443 ppm and Ф = 1.4 were performed with the fluences of (a) 6.36, (b) 3.18, (c) 2.01, (d) 
1.00 GW/cm2. 
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is dominated by the seeded population of atomic Na as the left-shift occurs at population 

levels of approximately 1.5 and 4 ppm. The right-shift occurs at population levels of 

approximately 2 ppm. The phenomenon requires further investigation. There is the 

implication that the collision among atomic Na and gaseous molecules is responsible for the 

shift. 

3.3.5 Repeatability of the Lineshape Fitting 

The lineshapes were determined by optimizing six terms introduced in Eq. 3-5 namely Ibaseline, 

IPS(ω), Δωshift, ΔωPS, Iabs(ω) and Δωabs. The fitting process initiated with the six values given 

by KaleidaGraph 4.1, which provided primary guessing. The Ibaseline was modified based on 

the data points if the value of was not appropriate. For example, the initial value of Ibaseline 

given by KaleidaGraph 4.1 is 1, which may be 0.01 (estimated from the smallest value of data 

points). The fitting value of Ibaseline is changed to obtain new values of other parameters. 

Generally, the values of the five parameters (except for Ibaseline) are determined. In some cases, 

Figure 3-19 Lineshapes of IPS wavelengthscan into the seeded flame for concentration of Na 
of 4.071 ppm and Ф = 1.4 were performed with the fluences of (a) 6.36, (b) 3.18, (c) 2.01, (d) 
1.00 GW/cm2. 
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the values of the five parameters required minor modification, which is less than 5% of the 

fitting values. However, some fitting lineshapes (shown in Figure 3-16 and Figure 3-19) 

reveal significant error between the experimental data and the fitting lineshapes. This might 

be due to pump beam scattering or fluctuation caused by the higher number density of atomic 

Na in the measurement. Moreover, a particular anomaly observed in Figure 3-17 may be 

caused by unexpected disturbance during the experiment because other lineshapes are 

consistent with the concentration variation. 

The same procedure was performed in all data sets to verify the repeatability of the lineshape 

fitting using Eq. 3-5 although the six values (as introduced in Eq. 3-5) can be determined 

individually. However, parameters are related to each other. This indicates that each parameter 

has a particular value, which fits the experimental data. Although the value of each parameter 

is allowed being justified approximately 5%, the modification is quite sensitive, even 1% 

variation in one parameter. This indicates that small variation to one parameter causes 

significant difference in the lineshape fitting. It is worth nothing that to achieve very good line 

shape fitting, a large data set is required. 

3.3.6 Beam Steering Effect 

Figure 3-20 presents a two-dimensional representation of the position of the Bprobe on the 

ICCD camera to illustrate the amount of deflection that the probe beam experienced when 

travelling through the laminar premixed flames with seeded Na. The temperature gradient 

within the flame produces a refractive index gradient. As a result, both probe and pump beams 

experience the beam steering effect because the PS signal is generated in the interaction 

volume of the Bpump and the Bprobe. The beam steering effect may cause significant uncertainty 

in current PS measurements when the effect is larger than the interaction volume. It must, 

therefore, be taken into account when analysing the experimental results. 
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Figure 3-20 Beam steering effects are investigated under Ф = 1.3 with (a) 0.5 g/L, (b) 1 g/L, (c) 
5 g/L and under Ф = 1.4 with (d) 0.5 g/L, (e) 1 g/L, (f) 5 g/L. The scale of radius is 1 mm. 
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Given that IPS is proportional to cot2(θ) [91, 100], the random error caused by the beam 

steering effect in the present experimental arrangement can be estimated. As shown in the 

illustration of beam steering effect (Figure 3-21), the Δθ (the angle variation caused by the 

beam steering effect) is obtained by: 

)(tan 1

PS

steering

D
x−=Δθ  

Eq. 3-8 

where, xsteering and DPS are the beam steering measured in the ICCD camera and the distance 

between the sample position and the ICCD camera, respectively. The beam steering effect was 

found to be approximately 1 mm (xsteering) at 1000 mm distance (DPS) from the intersection 

location to the ICCD camera. Hence, the variation of IPS caused by the beam steering effect is 

proportional to: 

)(cot2 θθ Δ+∝PSI  

Eq. 3-9 

Given that the intersection angle (θ) is 5.6°, the systematic error (EBS) caused by the beam 

steering can be obtained: 

%100
)(cot

)(cot)(cot
2

22

×
Δ+−

=
θ

θθθ
BSE  

Eq. 3-10 

Figure 3-21 Illustration of the systematic error caused by the beam steering effect; the 
displacement of images caused by beam steering has been identified to be around 1 mm from 
Figure 3-20. The distance between the intersection location and the ICCD camera is about 
1000 mm. Hence, the Δθ can be calculated. 
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Here, the EBS was calculated to be 2.03 % in the present PS optical arrangement. It presents 

the negligible random error in the PS measurement, compared to the other systematic errors.  

3.3.7 Atomic Na Detection in Lean Combustion Conditions 

As mentioned when discussing the limitations of the premix laminar burner, the diffusion 

flame burner, as shown earlier in Figure 3-4, was employed to achieve the stoichiometric on 

lean conditions of laminar methane flames [11-15]. A lean equivalence ratio of 0.61 was 

achieved by the air and fuel flowrates which were respectively 23.5 and 1.51 L/min. The air 

flowrate included the seeding air flowrate of 5 L/min. Given that the concentration of atomic 

Na in the lean flame is much lower than that in the rich flame [38], the saturation energy, 

which was expected to be lower than that presented in Figure 3-11, was 0.014 ± 0.006 

GW/cm2, as shown in Figure 3-22, although the concentration of seeded Na in the 0.61 

stoichiometric flame was 3.740 ppm similar to that in the 1.3 stoichiometry flame.  

Since Na compounds form in the lean flames [38], the absorption effect described in Eq. 3-5 

is considered to be weaker, compared to that in Figure 3-16. The wavelengthscan data, as 

presented in Figure 3-23, therefore, offer the evidence by which to verify the model, which is 

Figure 3-22 Saturation curves of PS signals at the Ф = 0.61; the saturation fluence was found 
to be 0.0134 ± 0.006 GW/cm2 extracted from Eq. 3-6. 
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described using Eq. 3-5, of atomic Na behaviour in the PS measurement.  

Unlike the strong absorption observed in Figure 3-16, significant absorption can be observed 

while the weaker IPS is present at the lower fluence of the Bpump, as shown in Figure 3-23 (g) 

~ (j). The weaker absorption indicates less atomic Na is present because atomic Na forms 

other Na compounds in the lean flames, such as Na2O and NaOH [38]. The lineshapes of 

atomic Na obtained in the wavelengthscan data, as shown in Figure 3-23, are modelled using 

Eq. 3-5, with a Lorentzian (saturation regime), except for the Figure 3-23 (j). Although 

Figure 3-23 (j-2) shows a good agreement with the model, Figure 3-23 (j-1) demonstrates an 

excellent match indicating an unsaturated PS profile was obtained with the fluence. 

3.3.8 Simultaneous Absorption Measurement 

In the conventional measurement to determine the absolute concentrations of the target 

species in the flame media, in the case of quantitative atomic Na [11, 13], laser absorption 

technique has been widely employed [206, 207]. To provide a reference concentration for 

quantitative PS, the absorption measurement has been conducted simultaneously in seeded 

flames for the measurement of atomic Na using PS. A PS signal is sensitive to pump beam 

fluence, the concentration of target species and the chosen transition owing to the nonlinear 

PS technique. The calibration curve is not always applicable at single wavelength for all 

ranges of concentrations and conditions of experiments. Hence, the simultaneous absorption 

measurement can provide the instantaneous concentrations of target species during the PS 

measurement. The simultaneous absorption was performed in rich premixed laminar flames 

using the burner (as shown in Figure 3-3 previously). 
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Figure 3-23 Wavelength scanning profiles of atomic Na in the flame with Ф = 0.61; the 
fluences for (a) ~ (j) are 6.36, 5.05, 4.01, 3.18, 2.53, 2.01, 1.00, 0.64, 0.09 and 0.05 GW/cm2, 
respectively. (a) ~ (i) demonstrate the PS in saturation regime and (j) reveals (j-1) the 
unsaturation and (j-2) the saturation regime, respectively. (j-1) represents the excellent 
agreement with data points indicating the profile obeys the Lorentzian cubic (n = 3). 
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3.3.9 Quantitative Measurement 

3.3.9.1 Laser Absorption Measurement 

To apply laser absorption measurements to the laminar flames with seeded Na, the 

Beer-Lambert law was employed, as described below: 

xα
I
I
out

in ⋅=)ln(  

Eq. 3-11 

where, the Iin and the Iout are the input and output laser beam intensities measured in the ICCD 

camera at the chosen wavelength; x is the absorption length in the flame (m); α is the 

absorption coefficient of atomic Na. Unlike conventional laser absorption measurement, the 

input laser beam (Iin) is acquired by averaging the intensities of 500 pulses of the Babs, 

immediately before the absorption measurement commences. The output intensity (Iout) is 

obtained by averaging the intensities of 50 shots of the Babs through the flame media. In order 

to eliminate the fluctuation of laser beam energy, both the Iin and the Iout are normalized by the 

instantaneous Bref which is directly introduced into the ICCD camera. The absorption path 

length, x, was measured to be 0.065 m in the flame media so that the absorption coefficient α 

was obtained. 

The absorption coefficient is a function of the number density (ns) of atomic Na (in this study) 

and absorption cross-section (σa) of atomic Na, given by: 

as σn ⋅=α  

Eq. 3-12 

The ns of atomic Na can be obtained when the absorption cross-section is determined. The 

method has been introduced in detail [207]. To determine σa, the Einstein coefficients for 

spontaneous emission, A21, stimulated emission, B21, and absorption, B12, at a specific 
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transition, which is 589.592 nm for the D1 line of atomic Na, can be given by [207]: 

12
2

1
21

213

32

21

B
g
gB

 A)cπ(B

⋅=

⋅
⋅
⋅

=
ωh  

Eq. 3-13 

where, c is the light speed (m⋅s-1), ω is the transition of atomic Na (s-1) and ħ is the Planck’s 

constant divided by 2π (J⋅s). For the D1 line of atomic Na, the A21 is 6.14×107 [20]. In 

addition, the degeneracy state (gi) of atomic Na in the D1 line is g1 = g2 =2 [20]. Thus, B12 of 

atomic Na was determined to be 4.75×1021 m3⋅J-1⋅s-2. Moreover, the relationship between B12 

and σa is governed by: 

c
Iσa

)(B12 ωω ⋅⋅⋅
=
h  

Eq. 3-14 

where, I(ω) is a normalised function that is used to describe the variation of the system and is 

governed by: 

∫
+∞

∞−

=⋅   1d)( ωωI  

Eq. 3-15 

I(ω) was determined by measuring the variation of the system with ω  for a narrow band 

around the D1 line of atomic Na (589.592 nm) to obtain a function of the angular frequency, 

f(ω). This function was numerically integrated to obtain the constant, κ, which is given by: 

∫
+∞

∞−

=⋅    κωω d)(f  

Eq. 3-16 

By dividing )(f ω  by the constant, κ in Eq. 3-16, which compared to Eq. 3-15, I(ω) is 

determined. Therefore, the absorption cross-section of the atomic Na in the seeded flames was 

experimentally determined to be 1.716×10-16 m2. The number densities of atomic Na were 
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experimentally obtained and are described in Table 3-4 (the experimental measurement 

column).  

The standard deviation across 50 shots was approximately 20%. This may be caused by the 

error accumulation owing to the systematic error of the flowmeters or the instability of the air 

and methane supply system. More critically, condensation of the seeded salt droplets occurs 

constantly during the seeding, disturbing the premixing process. Instability of seeded flames 

is the major issue of using the designated burner (Figure 3-4). 

To verify the concentrations of atomic [Na], the experimental results were compared with the 

calculated concentrations derived from the Eq. 2-31 divided by Eq. 2-32. The calculated 

number density is the total amount of seeded [Na]. Due to the 1500 K flame temperature, it is 

assumed that 2% of total seeded Na atoms are presented in the atomic form. The deviation of 

number density of atomic Na between the experimental and predicted results was investigated, 

as shown in Table 3-4. The calculated total seeded Na, which was based on the present 

seeding flowrate, was multiplied by the factor (ε = 0.02) as the predicted value of atomic Na. 

Although the derived results are not perfectly aligned with the experimental outcome (up to 

17% variation between the experimental and predicted values), it is still sufficient to verify 

the number density of atomic Na obtained from absorption spectroscopy measurement. 

Table 3-4 Number densities of atomic Na were obtained using laser absorption measurement, 
representing the concentrations of seeded Na of 0.5, 1 and 5 g/L 
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3.3.10 Wavelengthscan in the D2 Line of Atomic Sodium 

There was concern that the strong absorption in the D2 band of atomic Na (588.995 nm) [11] 

would make PS measurement difficult. As shown in Figure 3-24, the wavelengthscan of PS 

signals performed under conditions of the 6.36 GW/cm2 pump beam fluence, 0.5 g/L salt 

solution level and Ф = 1.3 was modelled by applying Eq. 3-5 with n = 3. Their performance 

indicated that the PS signals were in the unsaturated regime. It should be noted that the seeded 

population level of atomic Na was low and the high fluence of pump beam was employed. 

However, the measurement could not be performed under the saturation regime established 

for the current study. For quantitative measurement using PS, therefore, the D2 line of atomic 

Na is not appropriate. Significant absorption occurs in the D2 line of atomic Na so the D1 line 

was chosen to detect atomic Na released from burning coal particles using quantitative PLIF 

[11].  

Further investigation using PS in the D2 line involved the use of a higher concentration of 

seeded salt solution (1 g/L). Figure 3-25 shows that the wavelengthscan results reveal 

significant absorption. The consistency of the profiles is noticeable and implies that the 

absorption might dominate the PS measurement in the D2 lines. 

Figure 3-24 Wavelengthscan of IPS with a pump beam fluence of 6.36 GW/cm2 and with a 
concentration of salt droplets of 0.5 g/L at Ф = 1.3 is modelled by Eq. 3-5 with n = 3 
presenting the unsaturated IPS. 
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Figure 3-25 Lineshapes of IPS with four fluences of 6.36, 3.18, 2.01 and 1.00 GW/cm2 and 
with a concentration of salt droplets of 1 g/L at Ф = 1.3 (a ~ d) and at Ф = 1.4 (e ~ h) are 
modelled by Eq. 3-5 with n = 3 presenting the unsaturated IPS. 
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3.3.11 Pure Signal of Polarisation Spectroscopy 

Each wavelengthscan result of the PS signals of atomic Na in the seeded flames was 

normalized to the individual maximum intensity for the lineshape modelling using Eq. 3-5. 

The result was not sufficient to describe the relationship between IPS and the experimental 

parameters, however. The pure PS intensity (IPS_pure) was therefore extracted from the 

mathematical simulation results to demonstrate the behaviour of atomic Na measured using 

PS.  

3.3.11.1 Fluence Dependence 

As shown in Section 3.3.3, it is clear that the absorption becomes more significant when the 

pump beam fluence is weaker. This indicates that the IPS increases with the fluence of the 

Bpump since the absorption is constant in the medium with the same populated species. The 

behaviour of IPS_pure lineshape was extracted from the results that had been calculated using 

Eq. 3-5. The IPS_pure lineshapes extracted from three concentrations of atomic Na, namely 

0.127,0.258 and 0.241 x1018 atoms/m3 (listed in Table 3-4 previously) compared to the 

corresponding IPS lineshapes have been presented in Figure 3-26 ~ Figure 3-28. Figure 3-26 

demonstrates the PS lineshape under the 0.127×1018 atoms/m3 concentration of atomic Na 

varying with four pump beam fluences of 6.36, 3.18, 2.01 and 1.00 GW/cm2. Figure 3-27 and 

Figure 3-28 reveal the PS lineshape variation for the concentrations of atomic Na, 0.258 and 

0.241 ×1018 atoms/m3, respectively, with four fluences of the pump beam. Consistently the 

IPS_pure increases are associated with increasing pump beam fluences. 

It should be noted that the lineshapes of IPS_pure presented in Figure 3-27 are not as intense as 

those shown in Figure 3-26 and Figure 3-28. The reason for this is not yet clear. However, 

similar behaviour, the intensity fluctuation, has been observed in saturation curves (Figure 
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3-11), and in the higher atomic [Na], 0.428 and 0.466 ×1018 atoms/m3, as indicated in Figure 

3-29.  

A possible mechanism leading to the intensity fluctuation may be the diffusion effect under 

the saturation regime. The diffusion effect is caused by the pump beam heating Na atoms 

which are mobile enough to drift out of the interaction volume. Moreover, the flame is a 

peculiar medium possessing both complicated chemical and physical properties. In particular, 

H atoms in the rich flames favour the formation of atomic Na [38]. Hence, the IPS_pure 

lineshape of atomic Na is unlikely to be identical whenever the PS measurement is conducted 

in the rich flame media. The complicated outcome reveals the value of Eq. 3-5 in providing 

the possibility of a qualitative analysis of PS measurement performed in highly populated 

media.  

Figure 3-26 (a ~ d) Wavelengthscan is conducted to investigate the lineshape of IPS under the 
atomic [Na] of 0.127×1018 atoms/m3. The maximum IPS in the lineshape decreases with the 
descending pump beam fluences of 6.36, 3.18, 2.01 and 1.00 GW/cm2. (e ~h) The pure IPS 
decreases with the descending pump beam fluences. 
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Although the fluctuation of pure IPS is difficult to describe due to the complicated 

experimental environments, the tendency of the maximum pure IPS ( max
PS_pureI ) of atomic Na 

associated with the dependence on pump beam fluence and atomic [Na] was observed, as 

indicated in Figure 3-30 and Figure 3-31, respectively. The best-fit for the fluence 

dependence is modelled as linear and polynomial regimes. The linear best-fit, as shown in 

Figure 3-30(a), does not match the characteristics of PS measurement, which is a nonlinear 

technique although the R2 of best-fits are above 0.95. For the polynomial best-fits, as shown 

in Figure 3-30(b), there is the better agreement and behaviour similar to a saturated regime. 

Figure 3-31 represents the variation of the maximum IPS among the pump beam fluences in 

the premixed laminar flames with the same population level of atomic Na. The max
PS_pureI  

demonstrates the most significant fluctuation while the strongest pump beam fluence, 6.36 

Figure 3-27 (a ~ d) Wavelengthscan is conducted to investigate the lineshape of IPS under the 
atomic [Na] of 0.258×1018 atoms/m3. The maximum IPS in the lineshape decreases with the 
descending pump beam fluences of 6.36, 3.18, 2.01 and 1.00 GW/cm2. (e ~h) The pure IPS 
decreases with the descending pump beam fluences. 
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GW/cm2, followed by the fluence, 3.18 GW/cm2. In particular, the max
PS_pureI  fluctuates 

intensively when the strong pump beam fluence is applied in the high concentration media. 

The variation fluctuation was observed to be slightly influenced by the fluences. These results 

might indirectly support the assumption of a diffusion effect. 

 

Figure 3-28 (a ~ d) Wavelengthscan is conducted to investigate the lineshape of IPS under the 
atomic [Na] of 0.241×1018 atoms/m3. The maximum IPS in the lineshape decreases with the 
descending pump beam fluences of 6.36, 3.18, 2.01 and 1.00 GW/cm2. (e ~h) The pure IPS 
decreases with the descending pump beam fluences. 
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Figure 3-29 Lineshapes of pure IPS are extracted from the wavelengthscan data with atomic 
[Na] (a) 0.428×1018 atoms/m3 (b) 0.466×1018 atoms/m3. These dot lines represent the pump 
beam fluences of 6.36 (red), 3.18 (blue), 2.01 (green) and 1.00 (black) GW/cm2 were 
employed in the measurements. 

Figure 3-30 Fluence dependence of the pure PS intensities under the atomic [Na] (□) : 0.127; 
(○): 0.258; (Δ): 0.241; (∇): 0.428; (◊) : 0.456 ×1018 atoms/m3 ; (a) Linear best-fit with R2 > 
0.95 (b) Polynomial best-fit with R2 =1. 

Figure 3-31 Atomic [Na] dependence of the pure PS signals under the pump beam fluences 
(□): 6.36; (●): 3.18; (▲): 2.01; (∇): 1.00 GW/cm2 
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3.3.12 Line Broadening 

Three types of line broadening were investigated during the study: Doppler, collisional and 

power in the PS optical arrangement. Before the discussion about the collisional and power 

broadenings of atomic Na in the seeded flame, due to the non-Doppler-free measurement in 

the present experimental arrangement, the Doppler width ought to be assessed and is 

governed by [24]: 

Mc
ω

m
k

c
ωδ 0B0

ωD
2lnTR222lnT22 ⋅⋅⋅

⋅
⋅

=
⋅⋅⋅

⋅
⋅

=  

Eq. 3-17 

or 

)Hz(T1016.7 0
7   MδνD ⋅⋅×= − ν  

Eq. 3-18 

where, δωD is the Doppler width, δνD is the Doppler width in frequency units, ω0 is the 

transition of an atom at angular frequency (s-1), ν0 is the frequency of an atom (s-1), c is the 

light speed (m·s-1), kB is the Boltzmann constant (= 1.3806503×10-23 m2⋅kg⋅s-2⋅K-1), T is the 

temperature in the sample medium, R is the gas constant, m is the mass of an atom and M is 

the atomic mass (g/mol). By using Eq. 3-18 and M = 22.99 and ν0 is 5.088×1014 for Na at the 

flame temperature of 1500 K, the Doppler width of atomic Na in the atmospheric seeded 

flame was calculated to be 2.943 GHz, which is equal to 0.098 cm-1 (1 GHz = 30.0  cm-1). 

Moreover, the natural width of atomic Na corresponding to the transition between the 32P3/2 

and the 32S1/2 levels is 10 MHz, which is equal to 3×10-4 cm-1. In the following section, the 

collisional broadening is negligible if it is smaller than the Doppler width. A particular 

collisional broadening of atomic Na is nominated as self-broadening under the influence of 

other Na perturbers. The self-broadening of atomic Na in the D1 line is about 150 MHz/torr, 

which is equivalent to 3.80 cm-1 [24]. The properties of atomic Na at D1 line (32S1/2 – 32P1/2) 
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with one atmospheric pressure (760 torr) described above have been listed in Table 3-5. 

3.3.12.1 Collisional Broadening 

The effects on the target atoms that have been perturbed by other atoms in the atmospheric 

flame media, conventionally nominated as collisional broadening requires assessment. In 

flames media, the collisional broadening is caused by not only noble-gas perturbers but also 

molecular perturbers, namely N2, H2O, CO2 and H2 [205]. Comprehensive studies of pressure 

broadening in the D1 lines of atomic Na perturbed by various molecules have been reported in 

literature [24, 205, 208-218]. The summary of pressure broadening for atomic Na at the D1 

line under the temperature of 300 K reported in the literature has been listed in Table 3-6, 

providing the results that describe the potential pressure broadening in this work. One should 

Table 3-5 Doppler width, natural width and self-broadening of atomic Na at the D1 line 
(32S1/2 – 32P1/2) under one atmospheric pressure (760 torr) 

Table 3-6 Collisional broadenings of atomic Na at D1 line (32S1/2 – 32P1/2) under one 
atmospheric pressure (760 torr) and temperature of 300 K are caused by nitrogen and noble 
gases. 
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be aware that the values adopted in Ref. [24] were the average of all values in Ref. [216-218] 

due to the significant variation between experimental results.  

Table 3-6 demonstrates the collisional broadening for atomic Na at T = 300 K, which at 0.5 

cm-1, is larger than the Doppler width of atomic Na (0.098 cm-1) at T = 1500 K. This indicates 

that the collisional broadening of atomic Na in the flame media is not negligible. As to the 

shift shown in Table 3-6, it exhibits a different tendency with Δωshift in the simulation results 

obtained by using Eq. 3-5. Further work is, therefore, required to completely describe the 

lineshape of atomic Na.  

Collisional broadening of atomic Na in the flame media appears to also be perturbed by N2, 

H2O, CO2, H2 and other hydrocarbon radicals. Jongerius et al. [205] and Allard et al. [210] 

have investigated the collisional broadening of atomic Na at the D1 line in flames and brown 

dwarfs, respectively, using a temperature range of 500 to 2000 K, as shown in Table 3-7. The 

collisional broadening of atomic Na in the transition of 32S1/2 – 32P1/2 caused by the perturbers, 

namely H2O, CO2, N2, H2 and Ar in flames is found to be around 0.7 cm-1 at 500 K. The 

collisional broadening varies from around 0.9 cm-1 for Ar, N2 and CO/CO2 perturbers and to 

about 1.2 cm-1 for H2O and H2 at 2000 K. It is, therefore, reasonable to speculate that the 

collisional broadening caused by H2O and H2, which are major products in flames, at 1500 K 

Table 3-7 Collision broadening of atomic Na at the D1 line (32S1/2 – 32P1/2) perturbed by N2, 
H2O, CO/CO2, H2 and Ar measured in flames [205] and perturbed by H2 in brown dwarfs is 
computed [210].  
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is as significant as that at 2000 K. The collisional broadening caused by H2 reported by Allard 

et al. [210] is significantly lower than that measured in flames [205]. This may be the result of 

the interaction (reduction reaction) between H and Na atoms in rich flames [38]. 

D.M. Bruce [219] and F. Biraben [220] reported the collisional broadening of atomic Na in 

the transition of 32S1/2 – 42D3/2,5/2 (578.7 nm) summarised in Table 3-8. The collisional 

broadening caused by N2 is similar to that reported by Jongerius et al. [205], which was 

summarised in Table 3-7, although the collisional broadening caused by Ar is significantly 

larger. Moreover, the tendency of the shift results, which reveal the positive values for He and 

negative values for other perturbers, is consistent with those reported in the literature [208, 

213, 214, 216-222]. 

Given that the major perturbers, N2, H2O, H2 and CO2, are not negligible (greater than the 

Doppler width of atomic Na), the collisional broadening of atomic Na at the D1 line (32S1/2 – 

32P1/2) should be taken into account in the lineshapes of atomic Na using PS.  

3.3.12.2 Collisional Broadening 

As mentioned in the preceding section, the collisional broadening of atomic Na at the D1 line 

(32S1/2 – 32P1/2, 589.592 nm) caused by major perturbers, N2, H2O, H2 and CO2, is significant 

in atmospheric flame media. Figure 3-32 illustrates the occurrence of collisional broadening 

Table 3-8 Collisional broadening of Na at 578.7 nm (32S1/2 – 42D3/2,5/2) were reported by D.M. 
Bruce [219] and F. Biraben [220] at 600 K. 
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under various concentrations (ns) of atomic Na, namely 0.127, 0.258, 0.241, 0.428 and 0.456 

×1018 atoms/m3, associated with the pump beam fluences of 6.36, 3.18, 2.01and 1.00 GW/cm2. 

The FWHM of atomic Na shown in Figure 3-32 was found to be associated with ns under the 

same fluence of pump beam indicating the occurrence of collisional broadening. The FWHM 

of atomic Na with ns = 0.456×1018 atoms/m3 was found to be about 1.6 cm-1 under three 

fluences except for 1.4 cm-1 under 1.00 GW/cm2. The FWHM of atomic Na with ns = 

0.428×1018 atoms/m3 was found to be about 1.6 cm-1 under three fluences except for 0.8 cm-1 

under 1.00 GW/cm2. These results could indicate the contribution of power broadening. 

Moreover, the FWHM of atomic Na with lower concentrations (ns = 0.258 and 0.241 ×1018 

atoms/m3) was found to be around 0.8 cm-1 consistently under four pump beam fluences. This 

might have resulted from the reduction of power broadening.  

A particular anomaly evident in Figure 3-32 (a) is the concentration of 0.127×1018 atoms/m3, 

Figure 3-32 Normalized pure PS lineshapes experience collisional broadening under the 
pump beam fluences (a) 6.36 (b) 3.18 (c) 2.01 (d) 1.00 GW/cm2 with atomic [Na] (○): 0.127; 
(□): 0.258; (◊): 0.241; (×): 0.428; (+): 0.456 ×1018 atoms/m3. The result of (×): 0.428×1018 
atomis/m3 is absent in (b) due to the huge experimental variation. 
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which indicates a broader FWHM (~1.2 cm-1) than cases of higher concentrations. The same 

result for the broader FWHM could be caused by the 3.18 GW/cm2 pump beam fluence, as 

presented in Figure 3-32 (b). With the reduction of the pump beam fluences, the FWHM of ns 

= 0.127×1018 atoms/m3 becomes smaller by about 0.8 cm-1. This appears to provide evidence 

that power broadening is significant under low number densities of atomic Na. With higher 

concentrations, the power broadening may appears dominated by the collisional broadening: 

(Figure 3-32c and Figure 3-32d, respectively) 

The particular FWHM of ns = 0.428×1018 atoms/m3 behaves differently from that of ns = 

0.456×1018 atoms/m3 under the fluence of 1.00 GW/cm2, which is likely the results of the 

reduction reaction caused by H atoms in the flames [38] because more H atoms are present in 

the flames based on the chosen equivalence ratio of 1.4. This H reduction reaction leads to 

significant collisional broadening [205]. It is reasonable, therefore, that the FWHM in the ns = 

0.456×1018 atoms/m3 is consistently 1.6 cm-1, except for 1.4 cm-1 under the fluence of 1.00 

GW/cm2. The results of collisional broadening were generally consistent with the theoretical 

prediction reported by Reichardt and Lucht [113], although the theoretical prediction was 

simulated using an unsaturated regime. 

As the fluences were reduced, the FWHM of four concentrations of atomic Na shown in 

Figure 3-32 appeared to be influenced not only by collisional broadening but by power 

broadening. This made it necessary to assess the possible power broadening in the present PS 

optical arrangement. 

3.3.12.3 Power Broadening 

In preceding section, Figure 3-32 appeared to demonstrate a combination of collisional and 

power broadenings. Hence, the FWHM of atomic Na under the same ns influenced by four 

fluences of the Bpump was investigated and the results presented in Figure 3-33. Power 
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broadening, as theoretically predicted by Reichardt and Lucht [113], means that the higher 

pump beam fluence should facilitate a broader PS lineshape between unsaturated and strongly 

saturated regimes. The power broadening is significant in the atomic [Na], 0.127×1018 

atoms/m3, as shown in Figure 3-33 (a), and it becomes approximately identical in higher 

population levels of atomic Na, as presented in Figure 3-33 (b) ~ (d). This indicates that 

collisional broadening dominates the broadening effects in highly populated atomic Na. The 

power broadening was not as broad as predicted by Reichardt and Lucht [113] because the 

experiments in this study were performed using a saturated regime.  

The summaries of collisional and power broadenings under the experimental parameters are 

presented in Figure 3-34. It can be observed that the power broadening is significant in low 

concentration media because the collisional broadening in high concentrations media 

dominates the line broadening in the present PS optical arrangement.

Figure 3-33 Normalized pure PS lineshapes experience the power broadening under atomic 
[Na] (a) 0.127 (b) 0.258 (c) 0.241 (d) 0.456 ×1018 atoms/m3 with the pump beam fluences 
(○): 6.36; (□): 3.18; (◊): 2.01; (+): 1.00 GW/cm2. 
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3.3.13 Atomic Na Released from Burning Solid-Fuel Particles 

3.3.13.1 Qualitative Measurement 

The wavelength that had been experimentally determined to investigate the saturation curve in 

Section 3.3.2 was also employed to detect atomic Na released from burning solid-fuel 

particles. As mentioned in the preceding section, it was not necessary to establish a calibration 

curve using PS owing to the nonlinear PS measurement. However, the PS technique possesses 

the ability to suppress background noise, in particular during the devolatilisation phase of 

burning solid-fuel particles. Figure 3-35 presents the atomic Na measured using PS during 

the devolatilisation phase of burning coal and wood particles in premixed laminar methane 

flames with Φ = 1.4. Compared with the results of atomic Na measured during the 

devolatilisation of coal particles using quantitative PLIF reported by van Eyk et al. [11], the 

Figure 3-34 (a) Power broadening under ns of atomic Na (□) 0.127 (●) 0.258 (◊) 0.241 (▼) 
0.456 ×1018 atoms/m3 (b) Collisional broadening under the fluence of (□) 1.00 (●) 2.01 (◊) 
3.18 (▼) 6.36 GW/cm2; the errors are respectively 20% and 1% for ns of atomic Na and 
broadening width. 
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result of atomic Na using PS reveals the better SNR. This outcome indicates the capacity of 

the PS technique applied in the environments with strong background noises. The atomic Na 

was released from the devolatilisation of burning coal and wood particles, which lasted for 9 

and 13 seconds, respectively. 

As noted in the preceding section, the PS signal is dependent on the applied fluence of the 

Bpump. Figure 3-36 demonstrates the PS intensity of atomic Na measured using PS with a 

pump beam fluence of 0.893×104 J/m2 during combustion of solid-fuel particles. It is clear 

that the atomic Na is not detectable if there is a strong fluence. This may be indirect evidence 

Figure 3-35 Atomic Na released during the devolatilisation phase of burning (a) Loy Yang 
Brown coal and (b) pine wood particles using PS in a premixed laminar methane flame with 
Φ = 1.4. The timeframe of devolatilisation phase of coal and wood are 9 and 13 seconds, 
respectively. The chosen wavelength for the present PS measurement was 589.590 nm and 
the employed pump beam fluence was 1.00 GW/cm2. 

Figure 3-36 Atomic Na is not detectable using PS when there is a strong fluence of pump 
beam, 3.18 GW/cm2 was employed in burning (a) coal and (b) wood particles.  
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that the thermal diffusion effect caused by the strong pump beam fluence results in atomic Na 

vanishing in the interaction volume. A similar tendency was observed in the investigation of 

saturation curves (Figure 3-11) where a lower PS intensity occurred when a higher pump 

beam fluence was employed. The difference between Figure 3-11 and Figure 3-36 is the 

number density of atomic Na. For the lower [Na] (Figure 3-36), the atomic Na diffuses out of 

the interaction volume due to the heat generated by the high pump beam fluence resulting in 

the extremely low PS signal. Moreover, the intensities of the PS signals in Figure 3-11 

exhibited a significant variation when the higher pump beam fluences were employed. The PS 

intensity was, however, still significant due to the high concentration of atomic Na in the 

interaction volume. 

When an appropriate pump beam fluence is applied, the PS measurement is capable of being 

used to detect atomic Na during the char and ash phases of the burning of solid-fuel particles. 

Figure 3-37 shows the historical release of atomic Na during the combustion of solid-fuel 

particles with Φ = 1.4. The historical results of atomic Na released from burning Loy Yang 

coal particles are consistent with those reported by van Eyk [11], which indicates that the 

qualitative analysis of atomic Na released from burning solid-fuel particles might be 

achievable but the quantitative measurement is not. 

Figure 3-37 Historical release of atomic Na recorded using PS during the char and ash 
phases of burning (a) coal and (b) wood particles in the premixed laminar flame with Φ = 
1.4.  
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3.3.13.2 Difficulty of Quantitative Measurement 

To achieve quantitative measurement, a calibration curve is necessary, which is very difficult 

to achieve at high [Na]. However, the flame absorption coexisted with PS signals, which 

caused difficulties of building up a calibration curve in the current PS measurement. 

Wavelengthscan is performed to obtain the relationship between PS intensities and the 

concentration of the target species because the lineshape is a function of laser fluencies and 

Na concentrations. The IPS is nonlinear to the ns of the target species in a typical PS 

measurement. However, the flame absorption in the current PS measurement made the 

quantitative PS measurement almost impossible because the absorption varied the lineshapes, 

as presented in Figure 3-13 ~ Figure 3-19. This reveals that the magnitude of the IPS at a 

single wavelength is not always proportional to the concentration of the target species. 

Therefore, a calibration process is not reliable in the current PS measurement at high [Na] 

with strong atomic transition. In addition, atomic Na released from burning solid-fuel 

particles must be recorded without wavelengthscan because the period of scanning (15 

minutes) across the wavelength range (0.5 nm) is much longer than the lifetime of atomic Na 

in D1 transition. Although a single wavelength can still be used to detect atomic Na released 

from burning solid-fuel particles, due to flame absorption, the intensity of atomic is not 

always proportional to [Na].  

3.3.14 Potential Quantitative Measurement using PS 

Although quantitative measurement using PS seems unachievable in this study, some 

experimental arrangements may be considered to overcome the issues in the future work: 

1. To perform seeded flame in a slot burner 

2. To potentially achieve quantitative PS measurement using Eq. 3-5 
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3. To utilise a fast-scan laser system 

The flame absorption can be reduced using a slot burner because the absorption length can be 

minimised. However, it is unavoidable in the flame media because the thickness of the flame 

is still large to the detection volume using PS. The second and the third arrangements can 

potentially overcome the effect caused by the flame absorption to achieve quantitative PS 

measurement. 

To achieve quantitative measurement using PS, a calibration curve is required. However, the 

quantitative measurement of atomic Na in the flames may be possibly obtained using Eq. 3-5 

as a calibration curve was not achievable in this study. By examining the IPS(ω) in Eq. 3-5, 

which is a function of the number density of the target species (as introduced in Eq. 2-9 and 

Eq. 2-11), the number density of the target species may be extracted from the fitting results 

(lineshapes). To achieve this, a fast-scan laser system is required to scan the wavelength range 

(about 2 nm) within few micro- or milli-seconds. Unlike the slow scan employed in this study 

(20 minutes for 1 nm scan range), the number density of the target species was not constant 

during the time leading to concentration uncertainty in wavelengthscan results. Moreover, the 

determination of concentration of the target species relies on the lineshape fitting. Significant 

concentration variation can be fatal to the application. Therefore, the lineshape obtained from 

the fast-scan process can represent the instantaneous concentration of the target species 

without a calibration curve. This is why the potential of quantitative PS was performed in this 

study rather than demonstrating the quantitative measurement. 
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3.4 Conclusions 

The lineshape of atomic Na in the seeded flames using PS were modelled, governed by Eq. 

3-5: 
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Eq. 3-5 

The PS measurement employed in highly populated media consists of two effects: the PS 

signal, described by either Lorentzian (saturated PS signal, n = 1) or Lorentzian cubic 

(unsaturated PS signal, n = 3), and absorption effect. The model successfully describes the 

wavelengthscan of atomic Na using PS under various seeded population levels of atomic [Na], 

pump beam fluences and flame conditions. The regime of the right- or left-shift is not clear 

yet. It seems to be affected by the collision of atomic Na but this proved difficult to establish 

during the current study. 

The quantitative measurement of atomic Na using PS was not achievable in current study due 

to the difficulty to establish a calibration curve. Moreover, the study showed the potential of 

quantitative PS measurement performed in a fast-scan laser system without a calibration curve 

because the instantaneous number density of the target species can possibly be obtained from 

the lineshape fitting in the future work. 

The collisional and power broadenings have been identified from the pure PS lineshapes 

extracted from Eq. 3-5. The FWHM of atomic Na at the D1 line (32S1/2 – 32P1/2) was found to 

vary with the seeded [Na] under higher fluences of Bpump. The FWHM of atomic Na was 

found not to vary with seeded [Na] of 0.456×1018 atoms/m3 indicating that collisional 
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broadening dominates power broadening. This has been verified by examining the broadening 

of FWHM under the same fluence of pump beam.  

The saturation curves of atomic Na measurement using PS were found to be significantly 

different in lean and rich flames. They reflect the saturation fluence (about 0.13 ± 0.06 

GW/cm2) in the lean flame, which is much lower than that (about 1.5 ± 0.5 GW/cm2) in the 

rich condition for the same population level of seeded [Na]. This is because the atomic [Na] in 

the lean flame is lower than that in the rich flame due to hydrogen reduction reaction [38]. 

Three effects have been identified. The beam steering effect was found to be approximately 1 

mm at 2 m distance from the intersection location, occurring in PS measurement. It led to 

approximately 2.03% error in this measurement. The power broadening is significant in the 

low population level of atomic Na. The collision broadening was found to dominate the 

broadening effect in the present experiment. 

The mathematical simulation successfully not only describes the wavelength scan results of 

atomic Na in the seeded flames but also indicates the disadvantage of PS measurement 

suffering from strong absorption in the highly populated media. However, the advantage of 

the PS technique is its ability to detect species in environments with strong background noise. 

The pure PS signals were extracted from the simulation results. The collision dominates the 

power broadening in the higher population of atomic Na and the intensity of pure PS is related 

to the fluence of the pump beam. 

The chosen wavelength of 589.590 nm was used to detect the time-resolved history of atomic 

Na released from burning Loy Yang brown coal and pine wood particles. It demonstrates the 

capacity of the PS technique to suppress background noise during the devolatilisation phase. 

However, due to the nonlinearity of the PS measurement, it is unable to perform quantitative 

PS in the detection of atomic Na released from burning solid-fuel particles. The timeframe of 

atomic Na released from the devolatilisation of burning coal and wood particles was found to 
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be 9 and 13 seconds, respectively. 

The PS signal of atomic Na may not be achievable given the excess pump beam fluence due 

to the thermal diffusion in the interaction volume leading to the vanishing atomic Na. These 

phenomena have been observed in Figure 3-11 and Figure 3-36 providing the experimental 

evidence for thermal diffusion in the PS measurement. 

The simultaneous laser absorption measurement is associated with PS measurement to 

provide the instantaneous number density (ns) of atomic Na. The measured ns is compared to 

the product of the assumed ratio, ε, multiplied by the total amount of seeded Na calculated 

based on Eq. 2-31 divided by Eq. 2-32. The measured ns was found to be a good agreement 

with the predicted value, which indicated that the proportion of atomic Na in the flame 

assumed to be 0.02 was appropriate.  
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CHAPTER 4  

The Application of Polarisation Spectroscopy in 

Atmospheric Plasma 

4.1 Introduction 

The chapter describes the use of polarisation spectroscopy (PS) to detect atomic species in 

atmospheric pressure welding plasma, in which very strong background emission occurs. To 

investigate iron (Fe) in the environment with such strong background emission, various 

experimental conditions were put in place. The wavelengthscan of atomic Fe determines the 

wavelength employed in the following parameters of applied current, mixture fraction of 

buffer gas and radial position within the plasma. Of the characteristics of PS measurement, 

the energies of the pump beam and wavelengthscan were studied. 
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4.2 Experimental Arrangement 

4.2.1 Laser and Welding Systems 

A schematic diagram of the experimental set-up is depicted in Figure 4-1. A tuneable dye 

laser with a frequency mixing unit (Quantel, TDL90) pumped by a frequency doubled 

Nd:YAG laser (Quantel, YG980) was used. The output radiation from the dye laser near 605.6 

nm and a small part of the Nd:YAG fundamental frequency at 1064 nm, were directed to an 

Optical Compensator (OC) and a Mixing Crystal, as shown in Figure 4-1.  

Both the OC and MC were placed on an actively controlled mount to ensure maximum laser 

power while scanning the dye laser. The output radiation from the mixing unit was then 

directed to a set of four Pellin Broca prisms to suppress the dye and the fundamental Nd:YAG 

laser frequencies and permit the tuneable UV radiation, near 385 nm, to exit. The laser 

Figure 4-1 Schematic arrangement of PS: (M) Mirror, (CyL) Cylindrical Lens, (BSp) Beam 
Splitter, (Bst) Beam Stop, (SF) Spatial Filter, (SL) Spherical Lens, (RA) Right Angle Prism, 
(PL) Polariser, (GLPL) Glan Polariser, (Irs) Iris Diaphragm, and (TFP) Thin Film Polariser. 
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radiation near 385 nm was split into pump and probe beams by a quartz plate (beam splitter, 

BsP). The pump beam was expanded by a beam expander and then passed through a thin film 

rotatable polariser. The thin film polariser was used to control the pump beam energy without 

introducing any beam displacement. To form the laser sheet, the pump beam was directed to a 

cylindrical lens. The laser sheet was then directed to a polariser set vertically and then to a 

variable quarter wave-plate. The height of the pump beam sheet was ~ 7 mm while the probe 

beam was round with a diameter of ~ 1 mm. The angle between the probe and the pump beam 

was 8.8 degrees. A small part of the laser beam was sent to a pulsed wavemeter (Burleigh 

5500) for absolute wavelength calibration. The probe was directed through two Glan Laser 

Polarisers (GLP) (extinction ratios ~ 5×10-6), a spatial filter, and finally to an intensified CCD 

camera (Princeton Instruments, ICCD-576-G/RB-E) operated at 20 ns gate width. A very 

small portion, selected by the fourth polariser, of the laser output from the GLP was focused 

on the ICCD camera and acted as a reference energy beam. 

The welding drum was made from mild steel with an outside diameter of 220 mm and a wall 

thickness of 7mm. Water was circulated through a closed loop system to reduce the drum 

temperature. In all of the experiments, a tungsten electrode tip of 2.5mm diameter with a point 

ground to 60˚ degree was used. The height of the tungsten electrode above the drum was 4 mm. 

Some gases, such as pure Ar, He and a mixture of Ar and He, were used as the shielding gases 

[223]. Figure 4-2 illustrates the welding fume plumes with shielding gases of pure Ar, 50% He 

Figure 4-2 Welding fume is operated under (a) pure He (100%) with 35 A current (b) He + 
Ar (50 + 50 %) with 120 A current (c) pure Ar (100 %) with 120 A current. 
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+ 50% Ar and pure He. The details of the experimental arrangement with respect to the gas flow, 

welding torch, welding drum and are shown in Figure 4-3a. The ceramic shroud of the torch 

has an internal exit diameter of 11.5 mm and was positioned 8mm above the drum. Figure 4-3b 

shows the laser beam was placed in the middle of the fume plumes, 4 mm above the working 

piece.  

4.2.2 Nascent Iron in Welding Fume 

The induced voltage of the applied current between the cathode (working piece) and the anode 

(tungsten electrode), governed by the Ohm’s Law, heats up the working piece which vaporises 

to provide nascent Fe atoms. The population of Fe atoms in the welding fume plume is 

determined by the strength of the induced current which determines the temperature of the 

plume. The total welding voltage including the electrode extension drop (Vele-ext ) and effective 

voltage (Veff) which is equivalent to the cathode fall voltage (Vcathode-vol), arc column drop 

Figure 4-3 (a) Schematic diagram of PS measurement in a GTAW process; the location 
where the PS (red dot) is performed is 4 mm below the anode. The dashed lines represent 
temperature distribution within the welding fume. (b) Photograph shows the real-time 
welding fume using Ar as buffer gas and the location where the laser beam (red dot) is 
applied. (c) The total arc voltage is governed by Vele-ext + Veff between anode and cathode. 
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(Vcol-vol ), and anode fall voltage (Vanode-vol ), as shown in Figure 4-3c, is governed by [223, 

224]: 

volcolvolanodevolcathodeextele

effexteletotal

−−−−
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Eq. 4-1 

The Vcathode-vol and Vanode-vol are dominated by the properties of a given buffer gas as a function 

of the arc current, as well as the cathode and anode materials. As for the column drop (Vcol-vol ), 

it can be considered to be related to the thermal and electrical equilibrium of the welding 

fume. Moreover, the three voltages (Vcathode-vol, Vanode-vol and Vcol-vol), following Ohm’s Law, 

provided a constant resistance for the experimental arrangement. The Vele-ext is physically 

identical in the entire experiment due to the same experimental apparatus. The Vele-ext is 

constant, subject to the experimental apparatus. It is reasonable to consider that the Vtotal is 

constant with the chosen shielding gas and the applied current. Therefore, the nascent number 

density of Fe in the welding fume plume is dominated by the applied current. 

4.2.3 Data Acquisition and Processing 

The intensities of the Bprobe and Bref in two locations of each measurement image were 

extracted using Matlab 7.0. Similar image processing described in Chapter 3 was employed 

in this chapter. To reduce the variation resulting from the beam steering effect, the intensities 

of the PS signals were integrated by selecting an area of 121 pixels (11x11 matrix) 

surrounding the central pixel where the maximum intensity was located, similar to the setup 

shown earlier in Figure 3-7. This avoids the beam steering effect, which is smaller than the 

interaction volume. Due to the strong beam steering effect in plasma media compared to that 

in flame environment, the 11x11 matrix was used here to reduce the variation between each 

ICCD image.  

4.3 Results and Discussion 

The PS signals of Fe in the welding fume are dependent on the applied currents, chosen buffer 
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gases and fluences of the pump beam. The conditions of welding currents and the chosen 

shielding gases are directly related to the population of Fe atoms in the welding arc. The 

welding arc is generated by the electric field induced by the applied current, and the resistance 

is dominated by the combination of shielding gases and the gap between anode and cathode. 

The resistance is only related to the dissociation energy of the chosen buffer gas when the gap 

remains constant. Therefore, the ultimate voltage of Ar, as the shielding gas, is lower than that 

of He because the dissociation energy of He is 2372.3 kJ/mol [225] higher than the 1520.4 

kJ/mol of Ar [225]. This has been observed by Murphy et al. [226]. The voltage of the 

welding arc used He as a buffer gas with a 150 A current, which is higher than that using Ar. 

The Fe population level, therefore, can be dominated by the operation conditions of the 

welding process, which behaves differently at various wavelengths using PS. Apart from that, 

the intensities of Fe at the scanning wavelength using PS are related to the optical conditions, 

such as the fluences of the Bpump. In the following sections, a detailed discussion is provided 

of the investigation into Fe detection in the welding fume using PS. 

4.3.1 Wavelength Dependence 

The PS signal strength as a function of laser frequency was investigated. The current was set 

at 32 A and pure He was used as a shielding gas. The laser was scanned form 605.668 to 

605.753 nm with 0.001 nm steps, which generated the designated wavelength range (385.96 

nm to 386 nm with 0.0004 nm step) using the mixing crystal. It was set to stay at 30 images 

per each wavelength position (10 Hz image acquisition, 3 sec per measurement). To compute 

the PS intensity (IPS) at each wavelength position, the intensity of each pixel of each probe 

beam image was summed and averaged for 30 images. The values obtained were corrected for 

laser power variation using the reference beam intensity. The typical wavelengthscan using PS 

was introduced in Chapter 3. As Fe atoms possess strong UV transition at 385.99114 nm, 

corresponding to the transition 3d64S2-3d6(5D)4s4p(3P) [23], it was expected that only one 
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peak or strong absorption at 385.991 nm would be observed. However, the PS wavelength 

scan of Fe reveals more complicated feature, as shown in Figure 4-4.  

Figure 4-4 shows a peak at 385.991 nm, which is almost identical in value to the strong Fe 

transition at 385.99114 nm. This peak was attributed to the strong population of Fe atoms in 

the plasma zone. Another strong spectral feature was observed at 385.977 nm where 

significant absorption occurred. This is consistent with the results noted in the preceding 

chapter about the detection of atomic Na in the flame using PS, and indicates that significant 

absorption occurred in the transition of 385.977 nm with a larger population of Fe atoms. This 

feature may appear to present two transitions. However, after close inspection and with 

lineshape taken into consideration, it was concluded that this feature could be attributed to 

one transition only.  

The signal was generated by a non-linear optical process at intersection of the pump/probe 

beams, which is much smaller than the plasma zone. The Bprobe experiences significant 

Figure 4-4 Wavelength scan across the Fe transition at 385.991 nm, using He as the buffer 
gas with a 32A current; (a) Stark-shift area (b) Original transition area; the red line represents 
the simulation of experimental results based on Eq. 3-5. The green dashed line separates two 
areas where the Stark-shift and original transition, respectively. 
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absorption because of the highly populated Fe in the plasma media, an optical linear process, 

which results in the decrease of the intensity. The shift in the recorded wavelength, namely Δλ 

= +0.013 nm, can be attributed to the Stark effect, which results in a wavelength shift to the 

red part of the spectra. In the case of Fe, it was reported by Panter and Foster [227] that the D 

orbital experience a stark shift to the blue part of the spectra, which was observed in this study. 

To avoid the Stark shift in the following experiments, the chosen wavelength was 385.99 nm. 

The wavelength scan in the present experiment could only be achieved using He as a 

shielding gas due to the fact that the high current in the Ar environment led to enormous heat 

generation, causing the welding machine to shutdown. A completed wavelength scan not only 

takes 255 seconds (three seconds a step and 85 steps a complete scan), but also the 

wavelength adjustment takes another three seconds (30 blank images) between two 

wavelength positions. This means that the completed scan will take 510 seconds, which Ar as 

the buffer gas cannot tolerate. Using a different buffering gas, this experiment became the first 

time that a completed wavelengthscan of Fe across the transition, 386 nm, in welding plasma 

was achieved. Moreover, the result also implies that potentially the persistent transition, 

385.99 nm, of Fe in the welding plasma can be selected as the detection wavelength for future 

experiments. 

The wavelengthscan result, as shown in Figure 4-4, can be mathematically described using 

Eq. 3-3 and modelled using Eq. 3-5 by applying Marquardt’s algorithm [199, 228], which 

were introduced in Chapter 3. Two equations are repeated for convenience, as follows: 
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The wavelengthscan result has been separately described, namely the Stark shift and original 

transition areas in Figure 4-4 (a) and (b), respectively. For the Stark shift area, the Lorentzian 

function (n = 1) was employed and the Lorentzian-cubed function was applied in the original 

transition area. Therefore, the simulation of the experimental results can be obtained by the 

superposition of two equations, indicated by the red line in Figure 4-4.  

4.3.2 Mixture Fraction 

To investigate the behaviour of Fe atoms in different shielding gases, a mixture fraction of 

He/(Ar + He) was performed from 0 to 1. The measurement was performed with the current at 

80 A and the pulsed pump beam energy at 2 mJ. Figure 4-5 illustrates the Fe intensities 

measured by applying PS. The Fe signals became stronger while the amount of He was 

increasingly entrained. This indicated that welding could be achieved in a low current 

environment, in which the stable welding process was performed using He as the shielding 

gas. Due to the effective collision caused by the Ar ions in the plasma media, a significant 

number of Fe atoms are excited to higher energy states leading to lower Fe signals using PS. 

This indicates that the greater efficiency of GTAW can be achieved when He is utilized as the 

shielding gas. Therefore, the intensity of the Fe atoms at 385.99 nm using PS grows stronger 

as the amount of He increases. The Fe signal reaches maximum intensity when the pure He 

was applied as a buffer gas. . 
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4.3.3 Current Dependence 

As discussed in the preceding section, a low current is required in the welding process to 

provide a significant population of Fe atoms with He as the buffer gas. Figure 4-6 illustrates 

the strength of the Fe signal using Ar as a buffer gas with various currents, ranging from 90 to 

130 A. It was observed that the Fe signal at λ = 385.99 nm increased significantly while the 

applied current exceeded 120 A. This is consistent with the observation results that the higher 

current is necessary in the welding process when Ar is the buffer gas [223]. 

Figure 4-5 Intensities of neutral Fe detection using PS with mixture fractions of Ar and He 
under 80 A current and 2 mJ pulsed pump beam energy 

Figure 4-6 PS signals significantly increase while the applied currents are tuned from 90 to 
130 A. Ar is applied as buffer gas and 2 mJ of the pulsed pump beam energy is used in the PS 
measurement. 
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4.3.4 Energy Dependence 

The PS signal is dependent on the pump beam energy, as given by Eq. 3-6 [16, 204]: 
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PS II

I
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As noted in Chapter 3, the saturated energy of the Bpump can be extracted using Eq. 3-6. 

However, Figure 4-7 shows that the square root of the intensity of PS signal () is linearly 

proportional to the energy of the Bpump with an applied current of 35 A and He as buffer gas. It 

is clear that the intensity of the PS signal is proportional to the energy of the Bpump within the 

unsaturated regime. This is consistent with the results demonstrating that the Fe signal is 

much stronger in pure He media than it is in a pure Ar environment. Moreover, the Fe signal 

using PS in the He media with a low welding current, 35 A, compared to 80A, (Figure 4-5), 

indicates that the same performance of the welding process can be achieved by using He as 

the shielding gas. In addition, due to the low current process, the potential hazard of GTAW 

fumes can be reduced. On drawback is that it is difficult to start a welding arc with pure He. 

In this experiment, therefore, the welding arc was generated using pure Ar and the buffer gas 

was gradually switched to pure He.  

Figure 4-7 Fe intensity (●) using buffer gas of He and 35 A current is measured at the centre 
of plasma associated with the energies of the pulsed pump beam.  
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4.3.5 Iron in a Radial Position 

Given that the intensity of atomic Fe is related to the applied currents (as presented in Figure 

4-6 and Figure 4-7), to verify the relation between the plume temperature and populated level 

of atomic Fe, it was also important to investigate Fe in the radial position along with the 

cathode. It was observed that the PS signals of atomic Fe consistently decreased from the 

centre to the edge of the welding arc [223], as presented in Figure 4-8. It is reasonable, 

therefore, to correlate the temperature distribution with the Fe intensity within the welding 

fume. This experimental Fe intensity demonstrates a good agreement with the temperature 

gradient.  

4.3.6 Beam Steering Effect 

The beam steering effect caused by the thermal gradient in the sample medium, which in this 

case was plasma, is important for PS measurement because it represents the reliability of the 

results. If the beam steering effect is greater than the interaction volume, it leads to 

Figure 4-8 (a) The laser beam was employed in the centre of the welding fume, 4 mm above 
the cathode and radially switched to the edge of the welding fume. (b) Intensities of Fe (●) in 
the welding fume using PS were measured at the radial locations from the centre to the edge 
of welding fume. The measurement was performed using He as the buffer gas with a 35 A 
current and 0.5 mJ pump beam energy. The temperatures (▲) were adopted from Ref. [223] 
to estimate the plasma temperature. 
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uncertainty in the measurement. It is therefore necessary to identify the effect. Figure 4-9 

shows that the statistic of occurrence of the beam steering effect in three areas (a, b and c) 

was 17.71, 71.35 and 10.94 %. By applying the methodology in Eq. 3-8: 

)(tan 1

PS

steering

D
x−=Δθ                                                       Eq. 3-8 

It becomes clear that the major and overall beam steering effect was 1 and 2 mm, respectively, 

and that the distance between the arc zone and the ICCD camera was 2.42 m, as in the 

following: 
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By applying Eq. 3-9, the PS intensity possesses beam steering identified as: 
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Hence, the EBS caused by the major and overall beam steering in the present experiment using 

Eq. 3-10 was obtained, as below: 

%100
)(cot

)(cot)(cot

%100
)(cot

)(cot)(cot

2

22

2

22

×
Δ+−

=

×
Δ+−

=

θ
θθθ

θ
θθθ

overall

major
BSE

 

Eq. 4-4 

The EBS caused by major and overall beam steering was calculated to be 0.54 and 1.08%, 

respectively. It is clear that the EBS caused the minor random error for the detection of atomic 

Fe in the present experimental arrangement.  
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Figure 4-9 Beam steering effect of the detection of atomic Fe using PS in the GTAW process; 
the a, b and c represent the ratios of beam steering effect in three areas to be 17.71, 71.35 and 
10.94 %. The major beam steering (the b area) was observed to be around 1 mm. The overall 
beam steering, including (a, b and c areas), was found to be around 2 mm. 
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4.4 Conclusion 

This chapter explains the outcome of applying the polarisation spectroscopy (PS) technique 

gas tungsten arc welding (GTAW). The experimental work revealed a significant capacity for 

detecting metals, Fe of this case, in plasma using the PS technique because it possesses the 

ability to greatly suppress background noise [24].  

The shielding gas, helium (He) plays an important role in the GTAW process when it comes to 

improving welding efficiency. The welding current was set to 35 A using pure He as the buffer 

gas leading to a significantly high concentration of Fe atoms. Moreover, the Fe concentration 

was significantly improved when as little as 10% He was added to pure Ar shielding gas. 

When using Ar as the shielding gas, the concentration of Fe increased with the increasing 

currents. 

For the first time in the GTAW process, it was observed in the wavelengthscan that the Stark 

shift occurred (at +0.013 nm), leading to significant absorption at the transition of 385.977 nm. 

The wavelength scan result was described mathematically based on Eq. 3-5. This indicates 

that the PS signals of the original Fe transition at 385.99 nm and Fe with the Stark shift at 

385.977 nm possess good agreement with the theoretical model. 

The major and overall beam steering effect was identified to be 1 and 2 mm, respectively, 

which results in 0.54 and 1.08 % systematic error in the present PS measurement. It 

demonstrates that the beam steering is negligible in the present PS measurement. 
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CHAPTER 5  

Atomic Sodium and Potassium Detection using 

Atomic Emission Spectroscopy 

5.1 Introduction 

This chapter describes the use of the optical technique, atomic emission spectroscopy (AES), 

was used to detect atomic Na and K simultaneously released from a plume of burning 

solid-fuel particles. The approximately spherical particles, compoased of Loy Yang Brown 

coal from Victoria, Australia, and pine wood particles, were burned in premixed laminar 

methane flames with rich conditions. The rich flames provided a stable combustion 

environment in which to observe the release of alkali metals.  

The simultaneous shrinking and burning of the solid-fuel particles were recorded, along with 

the associated release of atomic Na and K in order to better understand their behaviour during 

combustion. 

5.2 Experimental Arrangement 

5.2.1 Laminar Premixed Flame 

In order to study the fundamental behaviour of alkali species released from individual burning 

solid-fuel particles, a stable and simple combustion environment is necessary. Therefore, a 
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laminar premixed flame is more suitable than non-premixed or turbulent flames owing to the 

stable and uniform combustion environment in which solid-fuel particles are burned 

constantly.  

The Perkin-Elmer seeding burner is a well-known laminar premixed burner (Figure 5-1) 

which contains a bottom chamber to premix air and fuel, connected to an upper honeycomb 

matrix with the circular shape of which the diameter is 23 mm. This central matrix was 

mounted within a concentric honeycomb with a diameter of 45 mm. The burner is specially 

designed to investigate the spectral lines of certain elements using flame atomic emission 

spectroscopy. It was designed so that the excess seeding solution can be removed from a drain 

in the bottom chamber.  

The flowrates of air and methane were controlled by mass flow controllers (MFCs, 

Bronkhorst) and four equivalence ratios: 1.149, 1.252, 1.287 and 1.336 were undertaken, as 

listed in Table 5-1. The detailed calculation of the equivalence ratios is presented in Section 

2.3.2. To verify that higher temperatures [229] occurred in leaner conditions with the same 

flowrate of air or fuel, the four equivalence ratios were specifically arranged using the same 

Figure 5-1 A Perkin Elmer burner is used to generate the premixed laminar flame. Salt 
droplets, methane and air were entrained and premixed in the bottom chamber. The drain is 
designated for removing the excess salt solution in order to maintain the volume of the 
mixing chamber. 
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flowrate of methane or air. For example, 0.779 ± 0.006 and 0.872 ± 0.006 mln (normal litre 

per minute) of methane was used in Φ = 1.149, 1.336 and 1.252, 1.287, respectively, while the 

corresponding air flowrates were 6.450 ± 0.03, 5.550 ± 0.03 and 6.630 ± 0.03, 6.450 ± 0.03 

mln, respectively.  

As presented in Figure 5-2, the flowrates of air and methane were established at equivalence 

ratios that would result in stable laminar flames. The unstable flames shown in Figure 5-3 

were not employed since the uncontrolled oxygen content present in the flame front of the 

vortex inside the flame would lead to the unpredictable release of atomic Na and K from the 

burning solid-fuel particles. Given the dimensions of the burner and the burning velocity of 

methane, stable flames based on equivalence ratios between 1.149 and 1.336 were achievable. 

Figure 5-2 Laminar premixed flames with Φ = (a) 1.149 (b) 1.252 (c) 1.287 (d) 1.336. 
Equivalence ratios of 1.149 and 1.336 are the boundary conditions for stable laminar flames. 

Table 5-1 Flowrates of air and methane employed in four equivalence ratios (Φ) controlled 
by two MFCs; the calculation of Φ is based on Eq. 2-30. 
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5.2.2 Experimental Signal Acquisition 

The spectrometer, an Ocean Optics USB 2000, was used to measure natural emission spectra 

from 200 to 850 nm, indicating that atomic Na (589.592 nm) and K (769.896 nm) could be 

measured simultaneously. This technique is capable of time-resolved measurement of the 

fluorescence of atomic Na and K released from coal and wood combustion. Due to sensitivity 

of the spectrometer caused by the wide spectrum range (from 200 to 850 nm), the signals of 

the weak emission spectra results are not detectable for the low SNR. The weak signals can be 

enhanced by increasing the integration time of the spectrometer. The longer integration time 

allows the spectrometer collect more emission radiation. However, the enhanced signals, 

including the enhanced noise, are not reliable owing to the low SNR. The integration time and 

the signal acquisition interval were set to be 3 milliseconds (ms) and 1 second (s), 

respectively.  

The solid-fuel particles were suspended by a platinum wire (Pt) 0.5 mm in diameter which 

was located 10 mm above the laminar premixed flame, as shown in Figure 5-5 and Figure 

5-4. The particles were placed so as to avoid, reducing heat loss and disturbance through the 

wire. This arrangement provided a comparatively uniform heating environment in which to 

Figure 5-3 The flame was operated with the equivalence ratio, Φ = 1.560. The vortex was 
caused by excess CH4 leading to an uncertain flame environment. 
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study single particle combustion [11].  

To stabilize signal acquisition, an optical fibre detector 0.1 mm in diameter was located 200 

mm from the flame and aimed 5 mm above the coal or wood pellets, which reduced any 

influence of the puffing flames. 

5.2.3 Data Acquisition and Processing 

The spectrometer is quite sensitive to the background noises so that the intensities of atomic 

Na and K (at 589.592 nm and 769.896 nm, respectively) were corrected by subtracting an 

average of 100 seconds of background noise. The methane flame and environment both 

Figure 5-4 Measurement volumes of atomic sodium and potassium on plumes of burning 
wood and coal particles were represented in the areas of the blue circles aimed 5 mm above 
the particles. Then particles were suspended 10 mm above the burner.  

Figure 5-5 Arrangement of the spectrometer (Ocean Optics USB2000, marked as C) and the 
laminar burner (A) were employed for the measurement of atomic alkalis released from 
burning solid-fuel particles (D) suspended by a Pt wire (B).  
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contributed the background noise, as shown in Figure 5-6. In order to recognize the strong 

lines of background noise, an integration time of 300 ms was carried out. The spectral lines 

were recognized as methyl (CH3), hydroxyl (OH) and water (H2O) [230]. The lines of CH3 

and OH radicals did not interfere with the lines of atomic Na and K.  

Several water lines, however, widely overlapped the lines of atomic Na and K, from 700 to 

800 nm, leading to a minor error. Due to the wide range of water line overlap of the D1 line of 

atomic K, background noise had to be considered a problem. Water lines with an integration 

time of 300 ms indicated that spectrum interference might be a significant issue when using 

laser-induced breakdown spectroscopy owing to the anticipated strong water lines in the 

plasma. 

The spectra during devolatilisation contained significant background emissions along the 

continuum, leading to uncertainty in the measurement shown in Figure 5-7, and hence a 

correction was required to reduce the effect. Figure 5-8 revealed that the baseline value used 

for the correction could be determined by averaging two values (two red lines) across the 

entire peak of atomic Na and K. Therefore, the intensities of atomic Na and K during the 

devolatilisation phase were obtained by subtracting the baseline values (the green line shown 

in Figure 5-8).  

Figure 5-6 Lines of CH radicals (CH3), hydroxyl (OH) and water (H2O) from pre-mixed 
laminar methane flames were recorded with an integration time 300 ms. Dashed lines 
represent the transitions of atomic Na and K. 
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In order to reduce signal fluctuation and systematic error, the time-resolved intensities of 

atomic Na and K were obtained by integrating five data points, including the wavelengths at 

the transitions, instead of choosing only a single intensity at the transitions, as marked in 

Figure 5-8, from point 1 to point 5.  

 

Figure 5-7 Typical emission spectrum of atomic Na (589.592 nm) and K (769.896 nm) 
during the devolatilisation phase with integration time (3ms); this contains significant 
background emissions from the continuum. 

Figure 5-8 The baseline obtained by averaging the left base and right base was employed to 
correct intensities of atomic Na during the devolatilisation. The time-resolved intensities of 
atomic Na were integrated by five data points (point 1 to point 5). The same data process was 
also performed at the intensity of atomic K, as presented in Figure 5-7. 
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5.3 Results and Discussion 

In this section, atomic Na and K released from burning particles of Loy Yang Brown coal and 

pine wood pellets are assessed under four rich equivalence ratios of 1.149, 1.252, 1.287 and 

1.336. Four richer conditions, namely 1.149, 1.252, 1.287 and 1.336, have been chosen to 

provide slow but gradual release rates of alkali species owing to oxygen rich flames leading to 

faster combustion [11-15] rates and the occurrence of hydrogen reduction favouring the 

weaker intensities of atomic Na and K [38]. In addition, the emission of atomic Na and K 

were assessed with the shrinking of burning solid-fuel particles, which might provide insight 

into the mechanisms of atomic Na and K release.  

5.3.1 Empirical Analysis using AES 

The major persistent the D1 lines of atomic Na (589.592 nm) and K (769.896 nm) have been 

selected for AES measurement. For the purpose of quantitative measurement using AES, the 

Eq. 2-1 (mentioned previously in Chapter 2) is further considered based on 

Lomakin-Scheibe formula [184, 185], as shown below: 

                                        )ln()ln()ln( speciesexp CbAI ⋅+=  

Eq. 5-1 

where, Iexp is the experimental radiation intensity of atomic Na or K; b is the self-absorption 

coefficient where b = 1 indicates negligible self-absorption and Cspecies is the concentration of 

atomic Na or K in the flame. To achieve quantitative AES, a calibration curve is required. 

However, two difficulties arise, the number density of the target species and the radiation 

volume that might occur during the calibration process.  

Alkali species exist in various forms within the flame so that the determination of the absolute 
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concentration of Na or K in a specific form is not always possible. van Eyk et al. [11] 

discovered that atomic Na distribution within the plume of a burning coal particle descends 

along the flame axis using quantitative PLIF. Although the absolute concentration in a single 

location can be measured using laser absorption spectroscopy, the radiation volume for the 

AES measurement contains spatial distribution, which contributes the intensity of the natural 

emission of the target species. Therefore, the AES technique was only useful and appropriate 

for detecting atomic Na and K qualitatively in the present experimental arrangement. 

5.3.2 Atomic Alkali Release 

5.3.2.1 Loy Yang Brown Coal 

Atomic Na and K released from burning Loy Yang Brown coal particles using AES were 

assessed under four rich equivalence ratios of 1.149, 1.252, 1.287 and 1.336 in premixed 

laminar methane flames, as represented in Figure 5-9. Three combustion stages, namely 

devolatilisation (τd), char (τc) and ash cooking (τa), consistent with atomic Na release reported 

by van Eyk [11] using quantitative PLIF, were observed. However, due to the significant 

scattering resulting from sooty substances while using PLIF (the scattering signal possesses 

the same wavelength, as introduced in Figure 2-3), the instantaneous release of atomic Na 

Figure 5-9 Atomic (a) K and (b) Na were released during three stages of the entire 
combustion process of burning Loy Yang Brown coal particles, namely devolatilisation (τd), 
char (τc) and ash cooking (τa),with four equivalence ratios of 1.149, 1.252, 1.287 and 1.336. 
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during the devolatilisation stage was not clear. Besides, unlike the AES technique, the LIF 

technique is not able to detect the release of atomic Na and K simultaneously.  

Intensity (Iexp) of natural emission is related to the species concentration (Cspecies), as 

mentioned in the Eq. 5-1 previously. It is possible to quantify the historical release of atomic 

Na or K with an appropriate calibration curve, which determines the empirical constant (A) 

under weak self-absorption, i.e. linear regime (b = 1). However, due to the difficulty of 

determining concentrations for trace species within the flame, the quantitative measurement 

using AES was not adequate in the experimental arrangement. The integral intensities of 

atomic Na and K, therefore, provide a relatively qualitative analysis during combustion. The 

quantitative measurement of historical [Na]total and [K]total released from burning solid-fuel 

particles would be investigated in the following chapter using quantitative LIBS.  

The three stages and the intensities were found to be associated with the equivalence ratio. 

The richer equivalence ratios led to a longer combustion process and lower instantaneous 

intensities of atomic Na and K being released during the three stages. However, the anomaly 

occurred at the intensities where the equivalence ratio of 1.252 was employed. This might 

have been caused by the variation between coal particles, which was observed in the 

preceding chapter using SAES. It is possible that variation in the particles could cause 

fluctuation in the release rates of alkali species, as these are likely to be related to combustion 

conditions. The combustion conditions determine the pore structure formed from the inside to 

the surface of the coal char particles during the devolatilisation phase [146]. Therefore, the 

equivalence ratios might lead to the similar formation of the core structures during the 

devolatilisation phase of wood particles. Details of this occurrence will be provided in 

Section 5.3.4 using the Shrinking Core Model. The anomaly is part of combustion behaviour 

and is reasonably negligible in the context of the overall scenario. 

For all four equivalence ratios, the devolatilisation stage of the burning coal particles 

consistently last for 12 seconds, as presented in Figure 5-10. The flame conditions during the 
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devolatilisation stage are crucial for the formation of the pore structures [146, 152], since it 

relies on the development of channels from which volatile substances are released from the 

inside to the outside of the coal char particles. This stage of the devolatilisation can be 

physically considered to be a sintering process that encourages density variation within the 

entire coal char particle. Denser pore structures mean that lean flames lead to faster 

combustion rates [146] and hence higher intensities of atomic Na and K are released. 

As shown in Figure 5-10, atomic Na and K exhibited intensities that were inconsistent with 

the changing equivalence ratios as described by the shrinkage core model [152]. This is 

because that the amount of volatile substance in each coal particle is highly variable. To 

identify the uncertainty of volatile content between coal particles, the total intensities of 

atomic Na and K were obtained in the devolatilisation phase of 10 experiments with the 

equivalence ratio of 1.149. Therefore, the variation was evaluated to be about 17%, which 

could cause significant uncertainty. It should be noted that the variation may be different in 

other batches of coal particles.  

Given that the pore structure is determined during the devolatilisation phase associated with 

the equivalence ratios [146], it is the critical parameter of the combustion rate of the coal char 

particles. van Eyk et al. [11] have also demonstrated that the atomic Na that is released is 

associated with the shrinkage of burning coal char particles until the end of the char stage. 

Figure 5-10 Atomic (a) K and (b) Na released from burning Loy Yang Brown coal particles 
under four equivalence ratios of 1.149, 1.252, 1.287 and 1.336 during the devolatilisation 
phase which was found to be slightly affected by the equivalence ratios. 
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Compared with the experimental results in this study related to particle sizes and flame 

conditions, the combustion rate with a lean equivalence ratio of 0.8 represented in Ref [11] 

was faster, indicating that flame condition plays an important role. Moreover, the intensities 

of atomic Na and K in lean conditions will be weaker owing to the formation of alkali oxide 

during combustion [38]. 

The historical records of atomic Na and K released during the char phase under four 

equivalence ratios are marked in Figure 5-11. The intensities and the char stages were found 

to be associated with combustion conditions. Greater intensities of atomic Na and K were 

released at the end of the char stage under leaner equivalence ratios. With equivalence ratios 

between 1.149 and 1.336 intensities and combustion rates were consistent with the observed 

configuration of the pore structures of the char particles [146]. 

As well as the pore structures and flame conditions affecting the combustion rates associated 

with atomic Na and K released from burning coal particles, chlorine (Cl) also plays an 

important role [231, 232]. When released, atomic Na and K behaved diversely, as shown in 

Figure 5-11. Particle shrinkage accompanied atomic Na release, while atomic K did not 

release significantly until the end of char stage. Chlorine mobilized alkali species from the 

inside to the surface of char particles [233], in particular K. In the case of biomass with high 

Figure 5-11 Atomic (a) K and (b) Na released during the char stage of coal were assessed 
under different equivalence ratios of 1.149, 1.252, 1.287 and 1.336. Due to the cracking of 
coal char particle during char stage, sudden peaks of atomic K occurred while the increased 
intensities of atomic Na were not intensive. 
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Cl content, such as straw [177, 178, 234], an enormous amount of alkali species are released 

and form alkali chlorides when it is burned. Loy Yang Brown coal, however, contains low Cl 

content and hence the violent release of atomic alkali was not observed in the experiments 

reported in this thesis. Moreover, the release of atomic K occurred at the end of the char phase 

while the atomic Na was released with shrinking coal char particles [12]. 

Given that coal is low in Cl content and that the behaviours of the atomic Na and K diverged 

from what had previously been observed during the char stage, it appears that Na release can 

be affected by pore structure favouring combustion rates that lead to more intense release 

during the char phase. Due to the lack of Cl mobilizing K to the surface, atomic K was not 

significantly released until end of the char stage. 

Few peaks circled in Figure 5-11 were caused by sudden cracking, indicating that the 

intensities of atomic K grew without significantly affecting the intensities of atomic Na. This 

indicates that atomic K was released from the fresh surface of the coal char particles. When 

the small cracking was burnt out, the intense release of atomic K dissipated. The intense 

release of atomic K implies that mobile K has been released during the devolatilisation phase 

and the rest of K needs to be mobilized from the inside to the surface of the char particles by 

Cl [233]. Therefore, a significant amount of KCl can be found if a Cl additive is entrained in 

the premixed laminar flame. This might alter the behaviour of the atomic K release during the 

coal combustion. 

Figure 5-12 illustrates the profiles of atomic Na and K released during the ash phase of Loy 

Yang Brown coal under four equivalence ratios. The ash of coal contains significant silicate 

and alumina, as shown in Table 2-1, and thus the major alkali compounds are Sanidine 

( 2322 SiO6OAlOK ⋅⋅ ), Albite ( 2322 SiO6OAlONa ⋅⋅ ) and Kaolinite ( 322 OAlOK ⋅ ). Unlike the 

intensity of atomic sodium (Figure 5-12b), the intensity of atomic K (Figure 5-12a) decayed 

dramatically toward the end of char stage. Atomic K took around 50 seconds to dissipate 

whilst atomic Na still possessed significant intensity.  



Ph. D. THESIS_SCHOOL OF CHEMICAL ENGINEERING_THE UNIVERSITY OF ADELAIDE 

136 

Although K species content in Loy Yang Brown coal is much less than Na species, it should 

behave like Na release. Nevertheless, the release of alkali species is dominated by the thermal 

decomposition. Hence an alkali species was released from the alkali compound while it was 

experiencing low dissociation energy. This may have been alkali sulphate in the early ash 

phase when the greater intense intensities of atomic Na and K were observed. Later, atomic 

Na and K were released in substantial quantities from alkali alumina silicates due to thermal 

decomposition. 

5.3.2.2 Pine Wood Pellet 

Using the same experimental arrangement as was used to process the burning coal particles, 

the atomic Na and K released from burning pine wood particles were also processed and 

analysed (Figure 5-13). Three combustion stages were also observed consistent with results 

in preceding section. It was noticed that profiles of atomic Na and K released from burning 

wood particles affected by equivalence ratios, which has been observed in coal combustion 

(Figure 5-9). The longer char stage of the wood combustion occurred while richer conditions 

were in place. Ash content also increased under richer conditions. The profiles of atomic K 

released from burning wood particles were observed to be consistent with those of the brown 

Figure 5-12 Atomic (a) K and (b) Na released during the ash phase of coal were assessed 
under four equivalence ratios of 1.149, 1.252, 1.287 and 1.336. Given higher temperature 
occurring in the leaner conditions facilitated faster release rates, the initial intensities atomic 
Na and K during the ash phase are descending with equivalence ratios. 
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coal. Atomic K was mainly released at the end of char stage and decayed dramatically at the 

beginning of the ash phase. 

The devolatilisation of the wood combustion under four equivalence ratios is illustrated 

graphically in Figure 5-14. This stage generally lasted for 22 seconds except under 

equivalence ratio of 1.336 when it lasted for 25 seconds indicating that the volatile substance 

was released slowly because of the low density of the pore structures [146].  

Due to the fact that temperature variation induced violent devolatilisation, the intensities of 

atomic Na and K during the devolatilisation phase were found to be equivalence ratio 

dependent. The pore structures were determined by equivalence ratios during the 

devolatilisation phase [146] which dominated the intense release of atomic Na and K. Other 

alkali species were released under leaner conditions during the devolatilisation phase, leading 

to a rapid combustion rate in the char phase. Pine wood ash therefore, contained fewer alkali 

species (shorter ash cooking stage). These experimental results indirectly prove that the pore 

structures are equivalence ratio dependent. If the pore structures had been independent of 

combustion conditions, the period of the devolatilisation would not have been consistent in 

the combustion conditions.  

Figure 5-13 Atomic (a) K and (b) Na were released during three stages of the entire 
combustion process of burning pine wood pellets particles, namely devolatilisation (τd), char 
(τc) and ash cooking (τa), as presented in (b) with four equivalence ratios of 1.149, 1.252, 
1.287 and 1.336. 
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Atomic Na and K released from burning particles of pine wood were assessed under four 

equivalence ratios (Figure 5-15), were brown coal particles. The char stage of the pine wood 

increased with richer conditions indicating that combustion rate decay was associated with 

combustion conditions. Due to insufficient oxygen in the flame, higher temperature occurred 

in the leaner conditions [229].  

The temperature variation between the equivalence ratios of 1.149 and 1.336 measured by a 

R-type thermocouple calibrated by radiation law, was approximately 50K. The temperature 

variation could be relevant to combustion rate. It is insufficient, however, for characterising 

the char phase of pine wood. The pore structures of the char particles as determined by the 

Figure 5-14 Atomic (a) K and (b) Na released from burning pine wood pellets particles under 
four equivalence ratios during devolatilisation which were found to be affected by 
equivalence ratios. 

Figure 5-15 Atomic K (a) and Na (b) released during the char phase of burning pine wood 
particles were assessed under different equivalence ratios of 1.149, 1.252, 1.287 and 1.336. 
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equivalence ratios [146] performed during the devolatilisation phase takes into account the 

combustion rates, which coheres with the experimental results of atomic Na and K released 

from the burning wood particles. 

The measured intensities demonstrate a decreasing tendency associated with richer conditions. 

The atomic Na and K under equivalence ratio of 1.149 were observed to experience the most 

intense release, lasting around 400 seconds. The slowest release, around 1800 seconds, 

occurred at condition of 1.336. Release profiles under equivalence ratios of 1.252 and 1.287 

behaved differently, which agreed with the trend of the combustion conditions. At 1.252 and 

1.287, regardless of the minor variation between the two conditions, the release profiles still 

behaved in good agreement with the equivalence ratio trend although the uncertainty between 

solid-fuel particles (8.4 and 3.5 % for coal and wood, respectively) can alter the tendency. 

This indicates the relationship between equivalence ratios (from 1.149 to 1.336) and 

combustion rates on char particles of the solid-fuel particles. For the future work, the 

relationship can be verified with wider range of equivalence ratios. 

The time-resolved intensities of atomic Na and K released during the ash cooking stage of 

pine wood were investigated (Figure 5-16). The profiles are consistent with those in coal 

(Figure 5-12). Atomic K decayed dramatically and atomic Na exhibited persistent release 

rates under all four conditions. For the condition of 1.149, atomic Na and K decayed rapidly, 

Figure 5-16 Atomic K (a) and Na (b) released during the ash cooking stage of pine wood 
were assessed under different equivalence ratios of 1.149, 1.252, 1.287 and 1.336 possessing 
agreement with exponential decay. 
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indicating that the release rates were affected by higher temperatures and that fewer alkali 

species were contained in the ash. The release tendency in the condition of 1.252 remained 

consistent with weaker intensities and took longer to dissipate. The intensities of atomic K 

under the conditions of 1.287 and 1.336 were observed to be weaker than those in other 

conditions and consistently lasted longer. Although combustion conditions dominated the 

behaviour of atomic K release during the ash stage, there was a consistent sharp decay rate in 

the first 200 seconds and then a linear decay. Therefore, the experimental results suggest that 

the temperatures of the flames and the content of the alkali species in the ash dominate the 

release records 

5.3.3 Proposed Model of a Burning Particle 

The temperature gradient within the entire mass of coal char particles during devolatilisation 

phase is illustrated in Figure 5-17. A temperature inversely proportional to the radius of the 

char particles was derived using the heat conduction equation on a sphere, as shown in 

following equations: 
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Eq. 5-2 (a ~ d) 

where, Ar is the surface area of a sphere; k is the thermal conductivity coefficient; Q is the 

heat transfer and T is the temperature at the corresponding radius of char particle, r (r1 and r2 

corresponding to T1 and T2, respectively). Given that high temperature in the sintering process 

favours high density particles, temperature variation (ΔT) within the entire mass of solid-fuel 
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char particles during the devolatilisation phase causes the density gradient within the char 

particles to form a multi-layered structure (Figure 5-17). The multi-layered structure may 

have more sub-layers if a detailed model is developed. The ash-shell is the result of burning 

solid-fuel particles at the end of the char phase and the outer- and mid-shell layers are 

dominated by the conditions existing during the devolatilisation phase [146]. It should be 

noted that the three-layer structure is simply a proposed assumption. It demonstrates the 

general behaviour of a rapid sintering process on a small particle. The densities of the three 

shells decrease with decreasing radius. The outer-shell is the densest layer owing to the 

longest sintering process with the highest cooking temperature during the devolatilisation 

phase. A low sintering temperature results in a loose structure in the mid-shell layer and the 

loosest layer in the ash-shell layer. 

Each shell may be precisely modelled using well-defined mechanisms. Each shell may 

contain multiple stages, owing to the minor effects of temperature variation, as shown in Eq. 

Figure 5-17 Solid-fuel char particles possess different densities in three areas, which are the 
outer-shell, mid-shell and ash-shell layers. Density decreases along with decreasing radius to 
the centre of the char particle. The outer-shell is the densest layer owing to being exposed the 
longest to the sintering process and the highest cooking temperature during the 
devolatilisation phase.  
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5-2d, especially for the mid-shell. For rich conditions, it takes longer to burn char particles. 

The slower combustion rate leads to longer cooking that shifts the boundary between the 

outer- and mid-shell of the char particles because the outer flame continues heating the 

particles. This indicates that the mid-shell layer becomes thinner during slow combustion. The 

heating is considered to be sintering. The combustion time determines the thickness of the 

outer- and mid-shell layers, which means that part of the mid-shell, forms a thin layer with a 

higher density. The density of the layer is expected to be between the original densities of the 

outer- and mid-shell layers when the outer-shell layer is sintered and formed at 1800 K, the 

temperature of volatile flame (in the devolatilisation stage using fitting of Planck’s law), as 

indicated in Figure 5-18, instead of 1500 K for the methane flame. Therefore, the structure of 

mid-shell layer may be slightly or significantly different form the original layer. This 

difference can be observed in the particle shrinking rate, which will be introduced in a later 

section. Due to the minor temperature effect during the cooking process, the outer- and 

ash-shell layers are generally constant. 

Given that the structure of the coal char particle was determined during the devolatilisation 

Figure 5-18 Temperature (1800 K) during the devolatilisation phase is investigated by fitting 
the radiation of continuum during the volatile combustion using Planck’s Law. 
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phase, the general combustion behaviour will not be altered during the following combustion 

of char stage. The applied methane flame (~ 1500 K) provides continuous heat to the coal 

char particles while the particle size is shrinking and hence the boundary between the outer- 

and mid-shell layers shift. The combustion of the mid-shell layer occurs whilst the overall 

combustion rate overtops the effect of density transformation. Therefore the combustion rate 

is highly equivalence ratio dependent. The particle size of the solid-fuel is a crucial factor in 

terms of varying the combustion rate. The critical diameter of the coal particle has been 

reported as 80 μm [152], which should be similar for the solid-fuel particles. Although the 

critical size of the selected solid-fuel particles in this study was not verified, the size (3 or 4 

mm) was much greater than 80 μm. The temperature gradient impacting particles below the 

critical diameter is considered to be uniform. It is not necessary, therefore, to consider the 

three-layered structure with the particles. For particles above critical diameter, the pore 

structures and equivalence ratio dominate the combustion rates of the char particles. 

5.3.4 Shrinking Core Model  

The solid-fuel particles of Loy Yang Brown coal and pine wood used for this study were 

pre-treated to produce spherical particles with diameters of 3 mm for coal and 4 mm for wood. 

Heat transfer through the solid-fuel particle has been described based on a standard heat 

conduction equation, as was shown in Eq. 5-2, which demonstrates temperature differences 

within a spherical fuel particle. However, it is insufficient to describe mass loss for burning 

solid-fuel particles. 

For burning spherical particles [152], it is appropriate to employ a shrinking core model to 

describe reactions at the moving core surface [160, 235, 236], as presented below: 
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This model characterises the diffusion of chemical species from their outer spherical 

boundaries through the spherical annulus (the shrinking layer). The reaction occurs at the 

unconsumed core surface, as indicated in Figure 5-19. It is assumed that the total volume 

conserves and hence the shrinking layer remains constant. In a burning fuel particle, the 

product layer grows, forming ash, as the particle shrinks. The model divides the solid-fuel 

particles into N shells to describe particle shrinkage during the devolatilisation and char 

phases. The density and composition of each shell change as the burning particle progresses 

so that the local shrinkage rate (dρ/dt), local thermal conductivity and specific heat change. 

Therefore, the overall histories of weight loss rate can be described.  
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5.3.5 Pore Structures 

Pore structure is formed in activated carbon during devolatilisation [146] , and the pores act as 

channels where gaseous and liquid substances (volatile matters) are transported from the 

inside to the outside of the particles. Combustion conditions determine the formation of three 

general types of pore structures: micro-, meso- and macro-pores, which are categorized by 

their radius. Generally, a radius less than 1 nm is defined as a micro-pore and between 1 ~ 25 

nm and greater than 25 nm are defined as meso- and macro-pores, respectively. Granular char 

basically has macro-pores which are not found in ground activated carbon. Where 

macro-pores are formed, they cut through meso- and micro-pores (Figure 5-20) and are the 

major conduit for liquid transport. An oxygen-rich environment results in violent 

devolatilisation formation of large numbers of meso- and macro-pores within char particles, 

and, therefore, fast char combustion.  

Figure 5-19 Illustration demonstrates the shrinking core model for burning solid-fuel 
particles. Tc and Ts represent the temperature of core and surface. r and rc are the radii of 
reaction surface and unconsumed core, respectively. R is the radius of a virgin particle and Δx 
is the shrinking layer. 
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Equivalence ratios influence the effects of pores on the emission of alkali species during 

combustion [146]. Although the pore densities of the char particles were not measured in this 

study, the effects of the pore structures were assessed by conducting a simple experiment. 

This can provide the indirect investigation of pore formation in char particles. The concept of 

the simple experiment is to investigate how equivalence ratios affect the formation of pore 

structures during devolatilisation. During the devolatilisation phase of the Loy Yang brown 

coal and pine wood pellets, pore structures were generated under the initial equivalence ratio 

(1.149 or 1.336) and the combustion condition was switched to the other three conditions. If 

the pore structures were not affected by the equivalence ratios, the intensities of atomic Na 

and K before and after the switching under the same equivalence ratio (1.149 and 1.336 in 

particular) should be similar. 

The variation in intensities of atomic Na and K under the equivalence ratios of 1.149 and 

1.336 before and after the 60th second could be used to verify the effect of the pore structures 

on atomic Na and K release. The stronger atomic Na and K were released from char particles 

treated under the initial equivalence ratio of 1.149, as shown in Figure 5-21 (a) for coal 

particles and (c) for wood particles before the 60th s, compared with those intensities for the 

equivalence ratio of 1.149 presented in 528HFigure 5-21 (b) and (d), after the 60th s. On the other 

hand, the intensities for the initial equivalence ratio of 1.336, as presented in Figure 5-21 (b) 

Figure 5-20 Illustration of three types of pore structure in char particles, namely micro-, 
meso- and macro-pores; a radius less than 1 nm is defined as micro-pores and between 1 ~ 25 
nm and greater than 25 nm are defined as meso- and macro-pores, respectively. 
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and (d) before the 60th s, are much weaker than those in Figure 5-21 (a) and (c) after the 60th s. 

These observations indicate that the equivalence ratio affects the formation of the pore 

structures during devolatilisation.  

The intensities of atomic Na and K became stronger when the flame condition was switched 

to the richer input at the 60th s, as shown in Figure 5-21 (a) and (c), and weaker when 

switched to the leaner input at the 60th s, as shown in Figure 5-21 (b) and (d). It should be 

noted that the high intensities of atomic Na and K [Figure 5-21 (a) and (c)] are also a 

response to hydrogen reduction [38, 237]. The intensity of atomic Na demonstrates behaviour 

consistent with the results in Ref. [11]. Given the similar properties of alkali metals, it was 

anticipated that atomic K would display the same tendency. The variation between the release 

of atomic Na and K for char particles of coal and wood indicates that the equivalence ratio 

Figure 5-21 Char particles of (a) coal and (c) wood were treated under Φ = 1.149 and under 
Φ = 1.336 in (b) and (d). The initial condition (1.149 or 1.336) was switched to the other 
conditions at the 60th second. The intensities of atomic Na and K significantly increased 
when the condition was switched from 1.149 to three richer ones, as shown in (a) and (c). 
One the other hand, the intensities decreased when the condition was switched from 1.336 to 
three leaner ones, as shown in (b) and (d).  
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employed during the devolatilisation dominates the release rates of alkali species. Therefore, 

the intensities of atomic Na and K represent a good method by which to verify the effect of 

the pore structures without conducting a complicated porosity measurement. The method can 

only be used to investigate the effect on the formation of pore structures within the limited 

combustion conditions. However, the porosity of a char particle cannot be measured using the 

method. The equivalence ratio may also dominate the combustion rate, which is discussed in 

the following section. 

5.3.6 Combustion Rate 

Combustion rates of burning solid-particles are related to combustion conditions [146] and 

particle sizes [152]. Therefore, the combustion rates of the Loy Yang Brown coal and pine 

wood particles associated with their shrinking were investigated using a Canon D80 

single-lens reflex camera. The investigation of particle shrinkage is based on the x-y ratio of 

the particle, as shown in Figure 5-22. The volume of raw particle, termed as Vx-y, can be 

determined by the following equation: 
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Eq. 5-4 

where, x and y are the geometric diameters of the particle in the x and y directions, as shown 

in Figure 5-22. The values of x and y as the two-dimensional length of raw particles used in 

this study are presented in Table 5-2. The images of solid-fuel particles in the stages of 

devolatilisation and char were taken every second and five seconds, respectively. The 

time-resolved shrinking solid-fuel particles have been recorded, as shown in Figure 5-23, 

which shows the shrinking coal and wood particles during three combustion phases. The 

shrinkage results of burning solid-fuel particles provide useful insight into the shrinking rates 

associated with equivalence ratios. 
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The size variation between the coal and the wood particles is 8.4% and 3.5%, respectively, 

which leads to a certain variation in the amount of shrinking particle. The devolatilisation 

time of the burning coal and wood particles using four equivalence ratios has, however, been 

identified to be consistently 12 and 22 seconds, respectively, except for 25 seconds for 

burning a wood particle under the equivalence ratio of 1.336. The variation in the amount of 

shrinkage was therefore, expected. Table 5-3 outlines the amount of shrinkage experienced by 

the burning coal and wood particles during the devolatilisation phase. It was observed that the 

amount of shrinkage (mm3) during the devolatilisation phase was not consistent owing to the 

variation in the raw solid-fuel particles. It proved difficult to correlate the combustion 

Figure 5-22 Time-resolved particle shrinkage is based on the measurement x-y ratio. The raw 
particle volume can be determined using Eq. 5-4. 

Table 5-2 Sizes of raw solid-fuel particles presented in geometric directions in x- and y-axis 
can be further employed to estimate the volume of solid-fuel particle. 
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conditions with the amount of shrinkage. In order to eliminate variations in particle size, the 

shrinking results can be normalized by the volume of a raw solid-fuel particle to represent the 

time-resolved shrinking percentage (%/s).  

The time-resolved particle shrinkage during the devolatilisation of coal and wood under four 

equivalence ratios was investigated, as illustrated in Figure 5-24. It was found that the 

volume of the virgin solid-fuel particles decreased during devolatilisation 10% in the case of 

brown coal and 15% in the case of pine wood. This remained consistent across four 

equivalence ratios. The variation is the result of the nature of the constituents of the solid-fuel 

particles, particularly the amounts of fixed carbon and moisture. While the contents of fixed 

carbon and moisture in wood-based biomass are generally 50% in dry basis and 50% by 

Figure 5-23 Images shows the shrinking burning particles of (a) pine wood (b) brown coal in 
stages of (1) beginning (2) end of the devolatilisation phase and (3) and (4) periods of char 
phase. The green circle indicates the location where the solid-fuel particle was burnt. 

Table 5-3 Amount of shrinkage of burning coal and wood particles during the devolatilisation 
phase shows the variation between solid-fuel particles. 
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weight, respectively, moisture content in coal is around 10% by weight and fixed carbon is 

generally 80% in dry basis. The content of volatile substance in wood-based biomass is, 

therefore, a highly volatile substance with a lower heating value. In addition, as presented in 

Figure 5-24, the shrinking rate of wood is more sensitive to equivalence ratios. The 

devolatilisation of pine wood lasts for 25 seconds under the equivalence ratio of 1.336. The 

particle shrinkage of coal during the devolatilisation is nearly independent of the equivalence 

ratios (Figure 5-24a). Unlike coal devolatilisation, multiple sub-stages of wood 

devolatilisation were observed (Figure 5-24b). However, it is difficult to interpret the 

difference between the devolatilisation of coal and wood in the current study. Judging from 

the nature of coal and wood particles, the difference may be related to their ingredients, in 

particular the three main compositions of wood, hemi-cellulose, cellulose and lignin.  

Figure 5-25 represents the shrinkage of burning char particles for brown coal and pine wood 

under four equivalence ratios of 1.149, 1.252, 1.287 and 1.336. Due to the effect of the 

equivalence ratios used during the devolatilisation, combustion rates were determined by the 

pore structures [146]. The shrinkage profiles demonstrate the multiple stages consistent with 

the temperature gradient introduced in Eq. 5-2, larger particles leading to higher temperature 

variation, and greater density variation within the char particles, as was illustrated in Figure 

5-17. Generally three distinct regions can be observed in the shrinkage of solid-fuel particles. 

Figure 5-24 Burning particle shrinkage of (a) brown coal and (b) pine wood during the 
devolatilisation with four equivalence ratios of 1.149, 1.252, 1.287 and 1.336 reveal that the 
devolatilisation of wood particles are significantly affected by equivalence ratios. 
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The first two regions became longer as conditions became richer. The last stage remained 

similar. Due to the burning process, the entire char particle is continuously heated by the outer 

methane flame leading to a variation in the densities within the particle allowing the longer 

burning process can facilitate the density variation.  

The variation in density is significant in the mid-shell layer because the flame temperatures of 

the four equivalence ratios are between 1450 ~ 1500 K and the temperature of volatile flame 

for coal and wood is about 1800 K, estimated using Planck’s Law, as shown in Figure 5-18. 

This results in the highest density being found in the outer-shell layer. The density induced by 

the methane flame, therefore, is not as high as the density in the outer-shell layer. Except for 

the major change in the shrinking rates in the three regions, it is evident that the shrinking 

rates change in the mid-shell layer for both coal and wood char particles. Moreover, the 

shrinkage of burning solid-fuel particles also provides a correlation between combustion rates 

and the release of atomic Na and K, as discussed in the following section. 

5.3.7 Combustion Stages 

5.3.7.1 Loy Yang Brown Coal 

Figure 5-25 Particle shrinkage rates of (a) brown coal and (b) pine wood during the char 
stage with four equivalence ratios were investigated. The variation between shrinkage rates 
caused by equivalence ratio of 1.336 is significant due to the pore structures. 
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Time-resolved release of atomic Na and K during the burning of the solid-fuel particles was 

also observed. Therefore, the release of atomic Na and K ought to be associated with the 

shrinkage of solid-fuel particles. Figure 5-26 demonstrates the linearity of shrinking coal 

particles, indicating that a global stage occurs in the devolatilisation of burning brown coal. 

The shrinkage rate was estimated to be approximately 1% per second for virgin coal particles 

with four equivalence ratios (10% during the devolatilisation phase, which lasts for 12s). The 

intensities of atomic alkali species were not distinguished, indicating that the release amounts 

of atomic alkali species during the devolatilisation phase might be independent of equivalence 

ratios. 

Figure 5-27 demonstrates the shrinkage of coal char particles associated with the release of 

atomic Na and K with four equivalence ratios of 1.149, 1.252, 1.287 and 1.336. Three 

sections of time-resolved shrinkage for coal char particles were determined by conducting the 

derivative of the shrinking profiles presented in Figure 5-25. Each stage was determined 

based on the sharp volume loss. This provides preliminary determination of each combustion 

stage of char particles. However, the precise boundary between each stage needs to be verified 

in the future work. As introduced in Figure 5-11, longer periods of char stages occurred with 

Figure 5-26 Releases of atomic Na and K during devolatilisation associated with shrinkage 
of coal particles under four equivalence ratios of (a) 1.149, (b) 1.252, (c) 1.287 and (d) 1.336. 
The shrinkage revealed the consistent linearity among the four combustion conditions. 
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richer conditions and the burning char particles followed the three-layer combustion model, as 

presented in Figure 5-17. Section I, II and III of the graphs in Figure 5-27 are three 

sub-stages of coal char combustion, as mentioned in Figure 5-17, outer-, mid- and ash-shell 

layers, respectively. The shrinking rates of coal particles were used to determine the three 

sub-stages of burning coal particles. The summary for the three sub-stages is presented in 

Table 5-4. The shrinkage of the coal char particles was consistent with the release profiles of 

atomic Na and K (as shown in Figure 5-11). Section I was similar for richer equivalence 

ratios, except for Φ = 1.149. Moreover, Section I under Φ = 1.336 last longer. This is because 

the low flame temperature and the low porosity during this sub-stage lead to a slow 

combustion rate, as recorded in Section I, while the outer-shell layer is formed. Combustion 

recorded in Section II was found to last longer and was associated with richer conditions. 

Section III on the graphs represents a combustion sub-stage that was found to be independent 

of equivalence ratios, and consistently around 50s combustion time.  

One particularly interesting result for Section II was observed. During the combustion 

recorded in Section I, the char particle is continuously heated and that is considered to be the 

sintering process that enhances the density gradient within the mid-shell layer. The enhanced 

density varied the local shrinkage rate, dρ/dt, so that changes to the slopes of the shrinking 

rates were observed. During the combustion of Section II, the density change would alter the 

local combustion rate. Therefore, the combustion rate in Section I varied frequently. Not only 

the porosity but also the enhanced density dominates Section II. Hence enhanced density 

corresponds with the longer period of Section II.  

Table 5-4 Periods of three sub-stages for coal char combustion under four equivalence ratios; 
it was found that the sub-stages became longer associated with richer combustion conditions 
and the sub-stage III remained similar. 
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5.3.7.2 Pine Wood Pellet 

The preceding section described how atomic Na and K release associated with burning coal 

particles was a global and a three sub-stage process during the devolatilisation and char stages, 

respectively. The three-layer model was employed to describe the historic emission of atomic 

Na and K and the shrinkage rates of burning coal particles. To identify atomic Na and K 

release associated with the combustion stages of the wood particles, the same model (as seen 

in Figure 5-17) was again applied. 

Figure 5-28 demonstrates atomic Na and K release with simultaneous time-resolved particle 

shrinkage during devolatilisation under four equivalence ratios. Unlike the devolatilisation of 

brown coal, the three sub-stages of the shrinkage of the wood pellets during devolatilisation 

could be observed and the atomic Na and K release could be correlated with the particle 

Figure 5-27 Three sections of combustion process for coal char particles associated with 
shrinking particle sizes (black dots) and the release of atomic Na (red dots) and K (blue dots) 
were observed under four equivalence ratios of (a) 1.149, (b) 1.252, (c) 1.287 and (d) 1.336. 
The purple circles in (a), (b) and (d) represent the intense atomic Na and K release when 
cracking occurs. 
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shrinkage. When studying the characteristic behaviour of burning wood particles, the kinetic 

properties of wood pyrolysis should be taken into account. The three sub-stage 

devolatilisation of the burning wood particles revealed properties of wood combustion which 

have been investigated using TGA [156]. Due to the kinetic properties of wood degradation, 

wood pyrolysis during the devolatilisation is associated with hemicellulose, cellulose and 

lignin degradation [153]. This indicates that the pyrolysis energies required for the 

combustion of hemicellulose, cellulose and lignin follow the kinetic properties of the wood. A 

sequential reaction model has been proposed to describe wood devolatilisation, as presented 

below: 

   V)(
  V)(

     V)(1

3

2

1

⋅−+⋅→⋅
⋅−+⋅→⋅
⋅−+⋅→

γβDγCβ
βαCβBα
αBαA

 

Eq. 5-5 

where A is virgin wood; B, C and D are charred residues; V1, V2 and V3 are lumped species 

representative of volatile species; α, β and γ are stoichiometric coefficients expressed as 

Figure 5-28 Simultaneous measurement of atomic alkali species release (blue for atomic K 
and red dot-lines for atomic Na) and shrinkage of wood particle (green dot line) during the 
devolatilisation phase with four equivalence ratios of (a) 1.149, (b) 1.252, (c) 1.287 and (d) 
1.336 
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fractions of original wood. A loss of mass is associated with heat and permanent gases [238] 

released during pyrolysis. This indicates that the energies required for three compositions of 

wood during combustion are different. Therefore, the kinetic model is applicable when 

explaining the loss of mass during the experimental burning of wood particles. The shrinking 

core model provides a feasible reason for the loss of mass during the devolatilisation of 

burning wood particles.  

The intensities of atomic Na and K were found to be stronger at the end of each sub-stage and 

the strongest release occurred at the lignin combustion. Given that the pore structures formed 

at the beginning of the devolatilisation dominate the combustion rates, the slow 

devolatilisation occurred with the richer equivalence ratio. Three sub-stages of wood 

devolatilisation were observed and related to the variation of equivalence ratios, as 

summarized in Table 5-5. Section I, Table 5-5, records the fact that the slowest process 

occurs under the equivalence ratio of 1.336. The intensities of atomic Na and K were found to 

be similar across four equivalence ratios. The combustion rate in Section II is fast, with an 

equivalence ratio of 1.149 owing to the porosity determined at the beginning of the 

devolatilisation [146]. The periods of Section I with Φ = 1.149 and 1.336, which are six and 

nine seconds, respectively, match the property of porosity. This also demonstrates that the 

pore structures formed during the devolatilisation phase under leaner conditions leads to the 

faster combustion rate [146]. The intensities of atomic Na and K become stronger than those 

in Section I. The highest intensities of atomic Na and K were observed in Section III. Due to 

Table 5-5 Periods of three sub-stages of the wood devolatilisation associated with four 
equivalence ratios. Section I and II became longer in richer conditions (compared to Φ = 
1.149) consistent with that reported by Yu et al. [146]. However, Section III became shorter 
associated with richer conditions. 
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the longer periods of Section II under equivalence ratios of 1.252, 1.287 and 1.336, more 

volatile matter was released so that the shorter periods of Section III occurred. 

The three sub-stage model (introduced in Figure 5-17) successfully describes the loss of mass 

from burning brown coal particles. Figure 5-29 illustrates the tendency for mass to be lost 

from burning wood particles releasing atomic Na and K under four equivalence ratios. The 

summary of three-shell layers for wood char combustion under four equivalence ratios is 

presented in Table 5-6. Except for shrinking core model applied to describe mass loss from 

burning wood char particles, the kinetic properties are also able to predict the behaviour of 

mass loss during wood char combustion [153, 155, 156]. Kinetic models have been developed 

to predict wood char pyrolysis with a global step [153] or multiple steps mechanisms [155]. 

The global mechanism predicts general behaviour but cannot provide a detailed scenario. The 

multiple steps mechanism performs the better prediction of wood char pyrolysis. Hence a 

model with three consecutive steps has been employed here [155], as presented in the 

following equation: 

Figure 5-29 Time-resolved atomic Na (red dots) and K (blue dots) released during wood char 
combustion particle shrinkage rate (black dot line) under four equivalence ratios of (a) 1.149, 
(b) 1.252, (c) 1.287 and (d) 1.336; Section I, II and III are the three sub-stages of the wood 
char phase. 
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  V; V; V 321 →→→ CBA  

Eq. 5-6 

where, A, B, and C are char fractions; V1, V2 and V3 are lumped volatile products. The first 

two reactions represent char devolatilisation and the last one is char combustion indicating the 

layer reaction is considered in wood char pyrolysis leading to the time-resolved particle 

shrinkage.  

For the intrinsic properties of the layer reaction, the time-resolved emission of atomic Na and 

K during the char phase may be considered to be the distribution of alkali species within the 

wood char particles. Because the sintering process with the temperature of volatile flame at 

1800 K leads to the highest density in Section I (outer-shell layer), the shrinkage rate is slow 

to reveal a linear profile, as shown in Figure 5-30. Due to the fact that the longest sintering 

process occurs in Section I, the alkali species contained in volatile substances are released. 

The intensities of atomic Na and K are not significant, therefore. Moreover, the pore 

structures formed at the beginning of Section I dominate the combustion rates of the 

outer-shell layer under four equivalence ratios. While Section I is burning, the continuous 

sintering varies the density within Section II (mid-shell layer), owing to the temperature 

gradient from the outer methane flame.  

Generally the periods of three-shell layers are dominated by the pore structures. For the 

mid-shell layer, the longer period of outer-shell layer combustion enhances the density within 

the mid-shell layer. Hence the shrinkage caused by burning demonstrates a consistent 

Table 5-6 Summary of the periods for burning wood char particles in the three major layers 
of wood char particles with four equivalence ratios of 1.149, 1.252, 1.287 and 1.336 



Ph. D. THESIS_SCHOOL OF CHEMICAL ENGINEERING_THE UNIVERSITY OF ADELAIDE 

160 

tendency. When the longer period of combustion of the mid-shell layer occurs, the layer can 

be divided into more sub-sections owing to the enhanced density.  

Unlike the burning of coal char particles, the intensities of atomic Na and K for burning wood 

char at the end of mid-shell layer revealed a plateau. The platform shows the consistent period 

of 100 ± 20s under the three equivalence ratios, except for Φ = 1.336 (about 50s). Figure 5-31 

shows the detailed platform at the end of the mid-shell layer under the equivalence ratio of 

1.336. The cause of the plateau is not clear. A feasible explanation is the stable combustion 

rate. During the char combustion, the mid-shell layer is continuously heated, leading to 

density transformation. The boundary between the mid-shell and the ash-shell layers shifts 

and the periods of the ash-shell layer are reduced. This effect is not observed in burning coal 

char particles because the lower amount of fixed carbon in the pine wood causes a looser 

density in the mid-shell layer. Pine wood contains low fixed carbon content so that the effect 

of the enhanced density at the end of mid-shell layer is not significant. Therefore, the platform 

could be viewed as the boundary between the mid-shell and the ash-shell layers. However, the 

pore structures do not seem to complete the scenario.  

Temperature of char particles increases during char combustion [12]. Therefore, the 

Figure 5-30 The second-derivative of the normalized shrinking wood particles with Φ = (a) 
1.149 (b) 1.252 (c) 1.287 and (d) 1.336 in Section I were used to demonstrate the linearity of 
burning wood particles. 
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combustion of fixed carbon is an exothermic reaction favouring particle temperature 

increasing, which provides enough energy to vaporize more inorganic substances leading to 

stronger intensities of atomic Na and K. The effect of the temperature gradient is continuously 

significant while the particle size is larger than the critical size so that the diffusion reaction 

still dominates the particle shrinkage. As long as the reaction is dominated by diffusion, the 

effect of the temperature gradient is still important. As the particles shrink, the effect of the 

temperature gradient weakens until the temperature gradient dissipates. Due to the loose 

density of the end of mid-shell layer, the pore structures dissipate so that the reaction rate 

dominates the combustion rate. The shrinkage rate within this region is constant, leading to 

the platform profiles of atomic Na and K release at the end of mid-shell layer. 

As for the ash-shell layer, the pore structures have been consumed and hence the reaction rate 

dominates the combustion rates, leading to a dramatic increase in the rate of shrinkage. The 

temperature within this layer heats the char particles uniformly, and shows constant and sharp 

rates of particle shrinkage. For the continuous combustion of fixed carbon, the particle 

temperature reaches the highest level at the end of the ash-shell layer (the end of the char 

Figure 5-31 Detail for the end of mid-shell layer of pine wood char particles with the 
equivalence ratio of 1.336 shows the consistent tendency observed in other flame conditions. 
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phase) [12], leading to the greatest release of atomic Na and K. 

It is also important to discuss the uncertainty of determination of three layers in a char particle. 

In addition to the particle variation (8.4 and 3.5 % for coal and wood, respectively), however, 

the uncertainty of determining the boundaries between three layers was not achievable in this 

study. Although the uncertainty was not demonstrated, the three-layer model described the 

fundamental tendency of burning solid-fuel particles.  

In this thesis, the three-layer model is proposed to correlate the release of atomic Na and K 

with burning solid-fuel particles. However, the proposed model needs to be verified 

theoretically and experimentally in the future work, which is not conducted in this thesis. The 

results presented in this thesis provide a preliminary investigation in the relationship between 

the release of atomic Na and K and burning solid-fuel particles.
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5.4 Conclusions 

The simultaneous detection of atomic Na and K released from burning solid-fuel particles was 

investigated using atomic emission spectroscopy (AES). Three combustion phases, namely 

devolatilisation, char and ash phases, associated with the shrinking of wood particles were 

recorded. The AES technique provides a time-resolved measurement for qualitative analysis 

with rapid response. Compared to LIF technique, the AES technique can reveal the atomic Na 

and K released during the devolatilisation phase of burning solid-fuel particles. Due to the 

fundamental of AES technique, the detection of multiple species can be achieved. However, 

spatial and quantitative measurements using AES may not be achievable.  

It was found that sizes of solid-fuel particles shrank consistently during the devolatilisation 

respectively 10% and 15% for virgin particles of brown coal (23 ± 3 mg, approximately 

spherical 3 mm diameter) and pine wood (63±3 mg, approximately spherical 4 mm diameter), 

under four equivalence ratios. The shrinkage of the virgin coal and the wood particles was 

observed to be a global and a three-stage process associated with atomic Na and K release.  

Due to the intrinsic properties of wood pyrolysis, the burning of the wood particles may be 

related to the combustion of hemi-cellulose, cellulose and lignin consistent with the shrinkage 

profiles. The intensities of atomic Na and K release during the devolatilisation are dependent 

on the equivalence ratios which dominate the porosity formation of char particles. Due to the 

slow volatile release, the devolatilisation of wood with the equivalence ratio of 1.336 lasts 

longer. The temperature of the volatile flame was calculated to be about 1800 K using 

Planck's Law. 

A simple experiment to demonstrate the effect of the porosity of char particles using AES was 

conducted. It demonstrated the intensities of atomic Na and K release during the char phase 

were affected by the initial equivalence ratio employed during the devolatilisation.  
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A three-layered model, namely outer-, mid- and ash-shell layers, is proposed to describe the 

shrinkage of burning char particles for brown coal and pine wood. The model successfully 

describes the particle shrinkage during the char phase. As the temperature gradient (described 

by a simple thermal conductivity equation) produces variations of solid densities within the 

burning char particles.  

The profiles of atomic Na and K release were observed to be associated with the shrinking 

char particles. Due to the particle size, the reaction rate dominated the char combustion at the 

end of the mid-shell layer when the profiles of shrinkage rates and atomic Na and K release 

were analysed. For the particle size and density of the ash-shell layer, the reaction rate 

dominated the combustion of the ash-shell layer, leading to the dramatic increase in shrinking 

rates. With the increasing particle temperature caused by the exothermic reaction of burning 

fixed carbon, the highest particle temperature occurred at the end of char phase and resulted in 

the largest release of atomic Na and K. 

The flame temperature dominates atomic Na and K release during the ash phase. The 

temperatures of premixed laminar methane flames with four equivalence ratios are 1450 ~ 

1500 K. Therefore, the historic emission of atomic Na and K decays dramatically under the 

equivalence ratio of 1.149 and last much longer with the condition of 1.336.
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CHAPTER 6  

Sodium and Potassium Detection using 

Laser-Induced Breakdown Spectroscopy 

6.1 Introduction 

In the preceding chapter, the release of atomic Na or K during the burning of the particles of 

Loy Yang Brown coal and the pine wood was discussed. In this chapter, the ways in which 

Laser-Induced Breakdown Spectroscopy (LIBS) were applied to provide insight into the total 

release amount of target species measured at a single point are described. Compared to the 

difficulty of measuring quantitatively the release of atomic Na using PLIF [11-15], the LIBS 

measurement is able to detect and measure Na and K released during the devolatilisation 

phase of burning solid-fuel particles.  

For the characteristics of LIBS measurement, plasma provides a high temperature 

environment (about 10,000 ~ 20,000 K) to dissociate alkali species into elemental forms. The 

total release of sodium ([Na]total) and potassium ([K]total) is defined as the time-resolved 

concentrations of total Na and K measured at a single point, as indicated in Figure 6-1, 

because Na and K species in the flame may exist in various forms, such as atomic alkali, 

alkali oxide, alkali chloride, alkali oxides and alkali hydroxide etc. This is an important 

limitation of the techniques, such as LIF, when used in reacting media to detect multiple 

species. 
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6.2 Experimental Arrangement 

6.2.1 Burner and Laminar Premixed Flame 

The same burner and equivalence ratios introduced in Section 5.2.1 have been employed in 

the LIBS measurement, providing the same experimental environment. For the calibration 

process, another MFC was employed to control the flowrate of the seeding air constantly at 

0.30 ± 0.015 mln, as shown in Table 6-1. To provide the same equivalence ratios, the flowrate 

of the seeding air is included in the total air flowrates. A nebulizer was employed to produce 

droplets of salt solution with a nominal diameter of 1 µm [11], as indicated in Eq. 3-2. To 

maintain the stability of flowrates for the gaseous mixture during the calibration process, a 

bottom outlet is designed to drain away any excess salt solution in the mixing chamber (as 

shown previously in Figure 5-1). 

Figure 6-1 Arrangement of LIBS measurement for the time-resolved release of trace species 
in the plume 

Table 6-1 Flowrates of main air, seeding air and methane for calibration process; the seeding 
air maintains a constant flowrate of 0.30 mln providing the consistent consumption rate of salt 
solution. The total air flowrate includes the seeding air flowrate providing the consistent 
equivalence ratios. 
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6.2.2 Laser-Induced Breakdown Spectroscopy 

The LIBS system, as presented in Figure 6-2, was applied to measure the quantitative and 

time-resolved histories of [Na]total and [K]total released into the plume by a single burning 

particle of coal (23 ± 3 mg, approximately spherical 3 mm diameter) or pine wood (63 ± 3 mg, 

approximately spherical 4 mm diameter) suspended on a platinum (Pt) wire at a height of 10 

mm above the laminar burner. A summary of equipments for the LIBS measurement is listed in 

Table 6-2.  

A Q-switched Nd:YAG laser (Spectra Physics) operating at the fundamental wavelength of 

1064 nm (10 Hz repetition rate and pulse width of 8 ns) and equipped with an attenuator (Iskra 

electronics, NRC, model: 935-10) to vary the pulse energy to provide a laser beam of 240 mJ 

per pulse. The laser beam was focused by a quartz lens of 150 mm focal length to a spot soze 1 

mm to generate plasma with an elliptical measurement volume at a position 10 mm above the 

burner surface during the calibration or 10 mm above the fuel particles. The emitted radiation 

was collected through a quartz lens of 150 mm focal length by a spectrometer (Triax series 320, 

Inc. Edison, NJ), which comprised a grating (300 grooves per mm) and an ICCD detector 

(Princeton instruments, model: 7483-0001). Due to the limitation of the grating (wavelength 

Figure 6-2 Arrangement of the LIBS measurement and the simultaneous atomic emission 
spectroscopy (SAES) comprises the conventional LIBS measurement and a simple AES 
spectrometer. Focal Lens: FL1 and FL2; PL: Plasma; RaP: Right Angled Prism; G: Grating; 
OF: Optical Fibre; BS: Beam Stopper; BF: Burner and Flame 
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range), [Na]total and [K]total cannot be measured simultaneously. Although both of the elements 

can be measured simultaneously using commercial equipment for LIBS measurement, 

measurements of Na and K can be performed with better resolution in the present apparatus. A 

pulse generator (Stanford Research Systems, DG535) and an oscilloscope (Tektronix TDS 

3054, 500 MHz) were used to trigger the laser and to optimize the gate delay and gate width, 

respectively, to reduce background noise. 

The signals of Na and K using LIBS in the calibration process and the combustion of solid-fuel 

particles are presented in Figure 6-3. For calibration, the radiation was collected with various 

concentrations of salt solution containing Na or K. The LIBS plasma applied inside the plume 

of burning solid-fuel particles provided the time-resolved histories of [Na]total and [K]total. 

Table 6-2 Summary of the equipments for present LIBS measurement 

Figure 6-3 LIBS applied in (a) Seeded flame and combustion of solid-fuel particles during (b) 
Devolatilisation (c) Char (d) Ash phases. 
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6.2.3 Simultaneous Atomic Emission Spectroscopy 

A spectrometer (Ocean Optics, USB 2000) was employed to measure the time-resolved 

release of atomic Na and K during combustion, simultaneously with LIBS measurement, 

termed as simultaneous atomic emission spectroscopy (SAES), as shown in Figure 6-2 

previously. This complements the measurement by LIBS, which cannot measure Na and K 

simultaneously, and adds to our understanding of the release of alkali species. The SAES 

measurement can therefore be used to investigate the difference between atomic Na and K 

released from burning solid-fuel particles and the variability between solid-fuel particles. 

Details of measurements using AES were included in Chapter 5. 

6.2.4 Signal Acquisition 

For the quantitative LIBS measurement of Na and K, a calibration process was conducted. 

The image was recorded every second, providing a time-resolved history of Na and K 

released from the burning solid-fuel particles and calibration process. Various spectral 

interferences are unavoidable in the region where the transition states of the target species are 

located, as indicated in Figure 6-4, including the background noise from the flames, 

Figure 6-4 Spectral interferences across (a) atomic K (b) atomic Na using LIBS with a delay 
time of 200 ns and a gate width of 500 ns 
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especially during the emission of atomic Na and K from the seeded flames. Although these 

spectral interferences are distinguishable, the lines of the trace species could overlap, leading 

to interference errors. Moreover, the background noise caused by the emission of atomic Na 

and K from the seeded flame or the plume is more significant and persistent than those in 

LIBS plasma, as illustrated in Figure 6-5. For these reasons, two procedures were applied to 

eliminate the unwanted effects. Firstly, the spectral interferences have different lifetimes from 

the target species. This provided an opportunity to isolate the signals from the interferences by 

optimizing the gate delay (the time before signals) and the gate width (the time to collect 

signals). Secondly, the intensities of atomic Na and K were treated as background signals.  

To improve the measurement of Na and K, it is important to identify the spectral interferences 

by optimizing gate delay and gate width. The spectral interferences across lines of atomic Na 

have been recognized [20, 42, 230] with 5 μs gate delay and the gate width, as shown in 

Figure 6-6. These do not seem to encourage errors in atomic Na measurement. As Figure 6-5 

showed, the contribution of flame emission to atomic Na measurement can easily be reduced 

by subtracting it from the LIBS intensity. Moreover, the intensity of atomic Na for the LIBS 

measurement becomes stable with a delay time of 30 μs due to the initial LIBS plasma 

reaching LTE, and the dramatic decay of the continuum of the initial LIBS plasma. The delay 

Figure 6-5 Spectral intensities of atomic Na were obtained at 589.592 nm for the flame 
emission and LIBS. The intensities of flame emission are stable while the intensities of LIBS 
emission become stable with a gate delay time of 30 μs. 
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time for the atomic Na measurement using LIBS was therefore determined to be at least 30 

μs.  

Unlike the simple interferences of atomic Na, interference is more complicated for atomic K, 

as indicated in Figure 6-4a. For the low signal-to-noise ratio of atomic K in the seeded flame, 

the spectral interferences have been recognized [20], as shown in Figure 6-7. The critical 

spectral interference is hot water lines which may be caused by water molecules excited by 

the relatively high temperature plasma. The intensities of the H2O lines dissipate with time. 

The LIBS plasma generated in a surface of an aluminium (Al) sample reaching LTE with a 

lower energy pulse has been shown to be between 0.5-5 μs or less than 1.5 μs for the higher 

pulsed energy (> 75 mJ) [239] so that the strong continuum signals occur after the laser fires. 

Although significant amount of the laser beam energy is used to ablate Al atoms from the 

Figure 6-6 The recognized spectral interferences across lines of atomic Na at 588.992 and 
589.592 nm are mainly N I and N II with 5 μs gate delay and gate width [20]. 

Figure 6-7 Spectral interferences across the D1 and D2 lines of atomic K (769.896 and 
766.490 nm, respectively) are mainly hot water (H2O) lines [20]. 
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sample, a different case of gaseous samples in this study, the timing to reach LTE can provide 

reference to optimize the gate delay and the gate width. To eliminate the major spectral 

interferences, the proper delay time should be determined beforehand and then consideration 

given to other spectral interferences. However, water lines still overlap the D1 of atomic K, 

indicating that some water lines are persistent and demonstrate various characteristics over the 

whole of their lifetime. It is evident that the water lines diminish with longer delay times of 

10.2, 20.2, 25.2 and 30.2 μs, as shown in Figure 6-8. The spectral interferences of the D1 line 

of atomic K for the delay time of 30.2 μs seem to be weak, which also suggests the delay time 

for the atomic K measurement ought to be at least 30.2 μs, consistent with that of the atomic 

Na measurement. 

To eliminate the interference of water lines with atomic K, a longer delay time was considered. 

As to the gate width, it was fore-determined in order to achieve better signals for atomic Na 

and K. The optimized delay time and gate width were experimentally determined to be 45 and 

5 μs, respectively. The [Na]total and [K]total were not measured simultaneously owing to the 

large wavelength difference between the D1 bands of atomic Na and K, which were out of the 

range covered by the chosen grating. Nevertheless, commercial spectrometer products, such 

as the Echelle spectrometer [51, 77], are capable of measuring multiple elements 

simultaneously. Although Na and K were not measured simultaneously, if they had been, 

resolution would have been improved, along with LOD. 

Figure 6-8 Water lines decay with the longer delay times of 15.2, 20.2, 25.2 and 30.2 μs. It is 
evident that the water lines diminish across the D1 line of atomic K. 
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6.2.5 Data Processing 

The raw intensities of Na and K in the D1 line contain the background noise and spectral 

interference. To improve the LIBS measurement for the quantities of Na and K released from 

burning solid-fuel particles, the background noise, the intensities of flame emission, and the 

possible spectral interferences are corrected. To improve the accuracy, an average of 50 

images for each measurement in the calibration process and background correction was 

recorded. The experimental intensities of atomic Na and K for the calibration and burning of 

solid-fuel particles were then obtained by subtracting the background noise and interferences. 

6.2.6 Calibration Process 

The experimental measurements of concentrations of Na ([Na]) and K ([K]) using LIBS were 

converted quantitatively by applying an appropriate calibration process. Unlike conventional 

calibration methods reported in the literature [77, 78] based on the relative intensities of the 

spectral lines of the reference and trace elements, the present calibration curves were based on 

the known quantity of seeded Na and K. Various concentrations of potassium sulfate (K2SO4) 

and sodium sulfite (Na2SO3) were entrained into the flame. Various alkali species distributed 

throughout the flame were dominated by the temperature. Atomic Na distribution, for 

example, decreases with the axial of the plume of burning coal particles [11, 12] and of 

burning black liquor droplets [13-15] using PLIF. On the other hand, Na formed other 

compounds when the temperature decreased rapidly. It indicated that the total released Na for 

the point measurement would be similar. Therefore, to estimate the [Na] and [K] in the seeded 

flames, the distribution of alkali salt in the seeded flame was assumed to be uniform.  

The calculation of the time-resolved concentrations of Na and K distributed within the seeded 

flame was based on the seeding rate of the slat and flame conditions, which was briefly 
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introduced in Section 2.4. The details of the seeded concentration calculation are provided 

here: 

Calculation begins with the measurement of the seeding rate of the salt solutions. Mass 

flowrate (υm, g⋅s-1) was calculated as the product of the concentration of alkali salt (Cs, g⋅L-1) 

and the consumption rate of salt solution (υs, L⋅s-1), as shown below: 

ssm υCυ ×=  

Eq. 6-1 

To calculate υs, the volumes of salt solutions before and after four hours consumption, with a 

constant seeding air flowrate of 0.300 ± 0.015 mln, were measured. Condensed salt solution 

on the bottom chamber of the burner was taken into account by feeding it back to the 

nebulizer system directly. Hence, the molar flow of alkali salts in the flame (υms, mol⋅s-1) was 

obtained, as shown below: 

Mmmms υaυ ⋅=  

Eq. 6-2 

where, M is the molar mass of the salt and am is the molar ratio of alkali ions in the salt. It can 

be seen that the total gas flowrate (υf, L⋅s-1) at the flame temperature Tf (K), is a function of 

the flowrate of methane (υg, L⋅s-1), the flowrate of air (υa, L⋅s-1) and Tr (room temperature, 298 

K): 

rfagf TTυυυ ×+= )(  

Eq. 6-3 

Then, using the ideal gas law, the molar flowrate of total gas (υmf, mol⋅s-1) through the flame 

is obtained, as presented below: 

 ffmf Tυυ ⋅⋅= RP  

Eq. 6-4 
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where, R is gas constant (0.0821, L⋅atm⋅mol-1⋅K-1) and P is atmospheric pressure (atm). In the 

final equation, the dimensionless concentrations (Cseeding, ppm), namely [Na] and [K], in the 

flame are expressed in parts per million (ppm), as shown below:  

mfmsseeding υυC =  

Eq. 6-5 

According to Eq. 6-1 ~ Eq. 6-5 and Eq. 5-1, two linear calibration equations of [Na] and [K] 

were obtained. In addition, the total seeded amounts of Na or K, indicating the number density 

of the target species (ns, atoms⋅m-3), can also be obtained by dividing Eq. 6-2 by Eq. 6-3. The 

details of the concentrations of seeded salts in the seeded flames are listed in Table 6-3. 

6.3 Results and Discussion 

The LIBS technique was employed to quantitatively detect [Na]total and [K]total at a single 

point in the plume of burning solid-fuel particles with calibration curves. The raw calibration 

curves were achieved by finding the relation of LIBS intensities corresponding to [Na] or [K] 

calculated mathematically. The seeded concentrations of Na and K are listed in Table 6-3. 

Table 6-3 Seeded concentrations of [Na] and [K] based on the constant 0.30 mln seeding air 
flowrate and ten amounts of salts in weight are calculated by applying Eq. 6-1 ~ Eq. 6-5 
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The calibration curves were corrected by considering the absorption, termed as signal 

trapping, caused by the atomic Na or K in the outer flame. By applying two calibration curves, 

the quantitative and instantaneous release records of total Na and K measured at a single point 

within the plume of burning solid-fuel particles could be achieved. 

6.3.1 Self-Absorption in Calibration 

By applying Eq. 5-1 and Eq. 6-5, as shown below: 

 )ln()ln()ln( speciesexp CbAI ⋅+=                                              Eq. 5-1 

 mfmsseeding υυC =                                                        Eq. 6-5 

Two calibration curves for [Na]total and [K]total were expected to be linear while 

self-absorption was negligible, i.e. b = 1. The calibration curves showed that the non-linear 

profiles indicating self-absorption was not negligible ( 1<b ) for the high concentrations of 

trace species. The same problem occurred to inductively coupled plasma-atomic emission 

spectrometry (ICP-AES) measurement. To obtain linear calibration curves by applying Eq. 

5-1, the ICP-AES measurement requires dilute sample solutions of concentrations of less than 

500 ppb. However, this is not always achievable for flame samples. 

Radiation is emitted from the centre of the plasma in the initial generation and then the 

plasma starts to expand until it reaches LTE. The target species are excited to higher energy 

states in the initial plasma and then decay to lower or ground states, which are able to 

re-absorb radiation emitted from the following generated plasma. Due to the fact that plasma 

quenching leads to re-absorption, self-absorption is not avoidable in plasma-based techniques. 

For the conventional LIBS measurement of gaseous samples, self-absorption is the only issue 

causing significant variation in the quantitative measurement.  
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6.3.1.1 Nonlinear Calibration 

The intensities of Na and K using LIBS were recorded using 40 concentrations of salt 

solutions under four equivalence ratios (ten concentrations for each equivalence ratio). Unlike 

the characteristics of equivalence ratios particular to burning solid-fuel particles, the 40 data 

points can be used to develop reliable and accurate calibration curves. However, the raw 

calibration curves, as presented in Figure 6-9, demonstrate non-linear characteristics. Two 

sections of slopes and the significant y-offsets were observed in the calibration curves of both 

[Na]total and [K]total. These imply the significant absorption dominating Section II and the 

y-offsets, although the y-offsets could be caused by systematic errors, including background 

noise and spectral interference. However, systematic errors should not be significant since 

correction was conducted. 

In terms of conventional LIBS measurement, Section II indicates significant self-absorption 

with high [Na] and [K] resulting in saturation signals. For the particular LIBS measurement, 

however, absorption is caused by not only self-absorption but more significantly by flame 

absorption. Self-absorption is caused by the trace species which re-absorb radiation of a 

specific wavelength outside the expanding plasma. Therefore, self-absorption becomes 

Figure 6-9 Raw calibration curves for [Na]total and [K]total indicate the presence of significant 
absorption. 
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significant with high concentrations of trace species. To reduce self-absorption, the chosen 

transition (wavelength) of target species is other persistent spectral lines rather then the major 

resonant lines. However, other persistent lines of Na and K, such as 404.414, 404.721, 

1169.021, 1176.962 and 1177.283 nm for K [20] and 819.482 nm for Na [20], were not 

observed with the gate delay and gate width (45 and 5 μs, respectively).  

Conditions can be adjusted to measure other persistent lines. Nevertheless, the intensities are 

very weak and overlapped by other spectral interferences from which they are difficult to 

distinguish. Thus, the chosen wavelengths for Na and K in the present arrangement are the D1 

lines (589.592 and 769.896 nm, respectively). Due to the chosen spectral lines, the 

self-absorption could be significant in the presence of target species with high concentrations. 

As shown in Eq. 5-1, 1<b  accounts for the self-absorption, which becomes more significant 

when the reversal of spectral lines occurs (b is very small, such as 0.1). Due to the 

particularity, another source of absorption for LIBS applied inside the seeded flame needs to 

be considered, as presented in Figure 6-10, indicating the absorption (defined as signal 

trapping) can be expressed by the Beer-Lambert law. 

To simulate the best-fit of the nonlinear calibration curves in Figure 6-9, two types of 

absorption sources need to be considered. One is self-absorption caused by the re-absorption 

Figure 6-10 (a) A schematic is used to describe the flame absorption occurring when the 
radiation of trace species emits from the LIBS plasma through the seeded flame and is 
focused and collected by a convex lens and the spectrometer, respectively. (b) Diagram 
indicates the absorption volume is considered to be shaped like a cone 
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in the LTE status of LIBS plasma and the other is the signal trapping resulting from the 

atomic alkalis in the surrounding seeded flames. Hence, the best-fit can be presented as 

follows: 

[ ] [ ] [ ] species1species1  Xa
species2

 Xa
actexp eXaeII ⋅−⋅− ⋅⋅=⋅=    

Eq. 6-6 

where, Iexp is the experimental intensity of the target species; Iact is the intensity emitted from 

the plasma; a1 is a dimensional coefficient and [X]species is the concentration of target species 

and a2 is a pre-factor constant. In terms of the self-absorption, the Iact, which is based on Eq. 

5-1, associated with Eq. 6-6, can be expressed in the following equation: 

[ ] [ ] species1  ab 
 species2exp aI XeX ⋅−⋅⋅=  

Eq. 6-7 

where, [ ]b 
 species2act aI X⋅=  and a2 is a dimensional pre-factor constant. Two best-fit models are 

indicated in Figure 6-11, one based on Eq. 6-7 [Figure 6-11(a)] and the other on Eq. 6-6 

[Figure 6-11(b)], with and without self-absorption, respectively. The simulation results based 

on Eq. 6-6 and Eq. 6-7 are presented below: 

[ ] [ ]   total  
total Na LIBS, 5I Na06.052.05 eNa10374. ⋅−⋅⋅×=  

Eq. 6-8 

[ ] [ ] total  
total K LIBS,I K03.052.05 eK10613.2 ⋅−⋅⋅×=  

Eq. 6-9 

and 

[ ] [ ] total  
total Na LIBS,I Na155.05 eNa10271.4 ⋅−⋅⋅×=  

Eq. 6-10 
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[ ] [ ]   total  
total K LIBS,I K134.05 eK10153.2 ⋅−⋅⋅×=  

Eq. 6-11 

where, ILIBS,Na and ILIBS,K are the intensities of atomic Na and K, respectively, using LIBS. 

The Eq. 6-8 and Eq. 6-9 show the better simulation tendency in terms of self-absorption, as 

shown in Figure 6-11(a). Compared to Eq. 6-10 and Eq. 6-11, however, the simulation 

tendency shown in Figure 6-11(b) reveals the variation without considering self-absorption. 

This indicates the self-absorption is significant with a self-absorption coefficient of 0.52, 

which is the average number of data points. Nevertheless, the self-absorption coefficient is 

specifically related to the concentration of target species. The overall 52.0=b  may not 

represent the self-absorption coefficient. It is difficult to identify the individual self-absorption 

coefficient that corresponds to the concentration of the target species. If the absorption 

Figure 6-11 Simulation of raw calibration curves using LIBS with the consideration based on 
(a) Eq. 6-7: b = 0.52 indicates significant self-absorption; (b) Eq. 6-6: b = 1 indicates the 
negligible self-absorption. (c) The table lists the simulation results with two regimes, as 
indicated in Eq. 6-10 and Eq. 6-11 for case (a) and Eq. 6-8 and Eq. 6-9 for case (b). □: Na; ○: 
K; ---: fitting of Na; ---: fitting of K 
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coefficient, b, can be determined, the pre-factor, a2, can also be obtained. When the absent 

self-absorption (b = 1) based on Eq. 5-1 in the conventional LIBS measurement is taken into 

consideration, it may be possible to determine a2. However, the LIBS intensity is involved in 

not only the self-absorption but the signal trapping. It was not possible to determine both 

values using the arrangement. 

It is possible to demonstrate the real LIBS intensities corresponding to concentrations using 

the simulation results. However, in terms of practical application, it is only necessary to apply 

Eq. 6-6 to obtain calibration curves (Eq. 6-10 and Eq. 6-11) without considering 

self-absorption. Indeed this is an acceptable approximation within a certain concentration 

range. Details in the next section describe the signal trapping (the exponential part in Eq. 6-6). 

The correction of LIBS intensities, as indicated in Eq. 6-10 and Eq. 6-11, can be completed. 

For the ultimate application, calibration curves shall be linear rather than to be exponential. 

6.3.1.2 Flame Absorption 

The LIBS plasma is surrounded by the seeded flame, as shown in Figure 6-3(a). The seeded 

flame contains atomic Na or K which absorbs a particular wavelength of plasma radiation. 

The absorption (signal trapping) becomes intense with high concentrations of seeded salts, 

which are exposed to the flame. The energy provided by the flame temperature is used to 

excite Na or K in the seeded flame where the number densities of atomic Na and K in the 

outside seeded flame are determined. The signal trapping increases proportionally to the 

amount of atomic Na or K in the outside seeded flame until the flame is saturated. Therefore, 

the signal trapping (flame absorption) interprets the saturation-like calibration curves in 

Section II observed in Figure 6-9. Moreover, the signal trapping also induces the y-offsets in 

the calibration curves because the self-absorption coefficient, b, becomes critical to LIBS 

intensities.  
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To improve the calibration curve by reducing self-absorption, the concentrations of the 

seeding salt solutions should be as low as possible [52]. Low concentrations of seeding salt 

solutions also reduce the flame absorption. Therefore, it may not be necessary for the 

quantitative measurement to take into consideration the self-absorption and flame absorption 

with low concentrations of trace species. This chapter describes the way in which a technique 

for measuring Na and K in the plume of burning solid-fuel particles was developed, and 

illustrates why further development is planned. 

Unlike unavoidable self-absorption, flame absorption can be corrected using the 

Beer-Lambert law which is well-established [207, 240], which is given by: 

xα
I
I

exp

act ⋅= )()ln( ω  

Eq. 6-12 

)()α( ωω as σn ⋅=  

Eq. 6-13 

where, Iexp is the experimental radiation intensity of atomic Na or K; Iact is the actual radiation 

intensity of atomic Na or K without signal trapping; x is the absorption length in the flame 

(m); α(ω) is the absorption coefficient of atomic Na or K at angular frequency (s-1); )(σ ωa  is 

the absorption cross-section of atomic Na or K at angular frequency (s-1) and ns is the number 

density of atomic Na or K (ns: atoms⋅m-3). Given the measured values of Iact, Iexp and x in Eq. 

6-12, the absorption coefficient of atomic Na or K, α(ω), can be determined. It is possible to 

calculate the ns of target species using Eq. 6-13, which has been conducted to measure the 

atomic Na released from burning coal particles [11, 12] and black liquor [13-15] 

quantitatively using PLIF. It is possible to apply Eq. 6-12 and Eq. 6-13 not only to calculate 

the ns of the target species in the flame but to demonstrate the absorption level of the media. 

However, the absorption cross-section should be determined in advance.  

To determine σa(ω), the Einstein coefficients for spontaneous emission, A21, stimulated 
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emission, B21, and absorption, B12, at a specific angular frequency of the transition, ω12 = ω21, 

can be given by [207, 240]:  
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For the D1 lines of atomic Na and K, the A21 are respectively 710x14.6  and -17 s 10x74.3 [20]. 

In addition, the degeneracy state (gi) of atomic Na and K in the D1 lines are both g1 = g2 = 2 

[20]. Thus, the values of B12 of atomic Na and K were determined to be 4.75x1021 and 

6.44x1021 213 sJm −− ⋅⋅ , respectively.  

The relationship between σa(ω) and B12 is expressed in the following equation: 

c
ωI

a
)(B)(σ 121212 ⋅⋅⋅

=
ωω h  

Eq. 6-15 

where, I(ω12) is the normalised function that is used to describe the variation between 

different systems and is governed by Eq. 3-15 so that the variation can be normalized: 

∫
+∞

∞−

=⋅   1d)( ωωI                                                         Eq. 3-15 

For LIBS measurement, I(ω) was determined by measuring the variation of the system with 

ω  for a narrow band around the D1 of atomic Na (589.59 nm) or K (769.896 nm) to obtain a 

function of the angular frequency, f(ω). Unlike the intensities of target species varying 

wavelengths in the PLIF measurement to determine I(ω) [11], it is easy for the present LIBS 



Ph. D. THESIS_SCHOOL OF CHEMICAL ENGINEERING_THE UNIVERSITY OF ADELAIDE 

184 

measurement to obtain the normalized function. Figure 6-4 represents the radiation intensities 

of atomic Na or K in the narrow band width, which were directly used to obtain the partition 

function. This function was numerically integrated to obtain the constant, κ, which is give by 

Eq. 3-16: 

∫
+∞

∞−

=⋅                          κωω d)(f                                             Eq. 3-16 

By dividing f(ω) by the constant, κ, which compares to Eq. 3-15, I(ω) is determined. 

Therefore, the absorption cross-section of atomic Na and K in the seeded flames can be 

determined. 

As shown in Figure 6-3a, the radiation emitted from the LIBS plasma is transmitted through 

the seeded flame by which the radiation is absorbed. Although flame absorption accompanies 

self-absorption, the flame absorption may be corrected whilst self-absorption is unavoidable. 

The calibration curves may be significantly improved by correcting the flame absorption. 

Flame absorption may be corrected by, firstly, using a schematic to describe the absorption 

scheme, as shown in Figure 6-10a. A top view of the schematic reveals that the isotropic 

radiation emitting from the LIBS plasma transmits through the seeded flame where the flame 

absorption occurs. Unlike normal absorption, flame absorption ought to be considered a 

volumetric absorption. The volumetric absorption has been taken into account to modify Eq. 

6-12 and Eq. 6-13, as presented in the following equations: 
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For normal absorption, the Beer-Lambert law is used to measure the number density of atoms 

per unit volume (ns) to which the absorption is proportional, as indicated in Eq. 6-13. ns can 

be obtained using Eq. 6-2 divided by Eq. 6-3 based on the assumption of a constant seeding 

process. Due to the particularity of the flame absorption, once the concentrations of the 

seeded alkali salts were calculated, and the concentrations of atomic Na and K in the seeded 

flame, for the approximate flame temperature of 1500 K, could be estimated. The factor, ε, 

was estimated to be 0.020 and 0.018 for atomic Na and K, respectively. The value of ε for 

atomic Na in the flame was experimentally verified in Section 3.3.8. The ∑(ns⋅σa(ω)) was 

considered to be the summation of the product of the absorption cross-section and number 

density and ∑xi are considered to be a cone whose volume is given by: 

    π
3
1 2

coneconei hrΔvx ⋅⋅⋅==∑   

Eq. 6-17 

where, rcone is the radius of the base circle (m) and hcone is the height of the cone (m), as 

indicated in Figure 6-10. Thence, a modified Beer-Lambert law was obtained to correct the 

raw experimental intensities of [Na]total and [K]total, as described below: 

)ln(]))(([)ln( expasact IΔvσnεI ⋅⋅⋅⋅= ∑ ω  

Eq. 6-18 

By use of Eq. 6-16 and Eq. 5-1 and assigning b the value of 1 in Eq. 5-1, two modified 

calibration curves for both of [Na]total and [K]total, (Figure 6-12), can be obtained, as in the 

following equations: 

NaNa CI ⋅= 674.426  

Eq. 6-19 

KK CI ⋅= 500.219   

Eq. 6-20 

where, INa and IK are LIBS intensities corresponding to the concentrations of Na and K seeded 
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into flames. As shown in Figure 6-12, two calibration curves reveal good linearity without 

evidence of self-absorption, indicating that LIBS is capable of instantaneously measuring the 

concentrations of target species during combustion. However, a larger variation of 

experimental intensities with higher concentrations of seeded salts was observed, indicating 

that self-absorption had become more significant due to higher concentrations of seeded salts 

led to greater self-absorption. Therefore, the application of the LIBS measurement for high 

concentration measurement is constrained by significant self-absorption.  

6.3.2 Quantitative Measurement 

Temporal release intensities of Na and K with four equivalence ratios using LIBS, as 

presented in Figure 6-13, demonstrate three combustion stages which are consistent with 

those introduced in Chapter 5 using AES. The time-resolved release of [Na]total and [K]total 

measured at a single point during the burning of solid-fuel particles was quantitatively 

investigated by applying two appropriate calibration curves, as shown in Figure 6-14. The 

max
total]Na[  and max

total]K[  measured at a single point in the plume of burning solid-fuel particles 

during the devolatilisation and char phases with four equivalence ratios using LIBS have been 

Figure 6-12 Final calibration curves for the measurement of [Na]total and [K]total using LIBS, 
corrected for signal trapping, as shown in Eq. 6-19 and Eq. 6-20; the error was multiplied by 
a factor of 10 to clearly present the error bars. The errors of the fitting equations of [Na] and 
[K] are respectively 2.68 and 2.89%.
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summarized in Table 6-4. The max
total]Na[  and max

total]K[  during the char phase were observed to 

occur at the end of this phase, which was observed in Chapter 5 using the AES technique.  

Due to the variation of wavelength between the D1 lines of atomic Na and K, both species 

were individually measured which improves the LOD. For the present LIBS measurement, it 

is difficult to conduct a Na-to-K ratio (RK/Na) owing to the variation of composition of each 

solid-fuel particle. When using LIBS and SAES, RK/Na may only be only available for wood 

combustion with an equivalence ratio of 1.149. The SAES measurement supports the present 

LIBS measurement, providing qualitative investigation during combustion.  

6.3.2.1 Devolatilisation Phase 

For PLIF measurement, the SNR is too low to measure atomic Na during the devolatilisation 

phase of a burning Loy Yang Brown coal particle owing to the sooty interference [11]. To 

investigate Na and K release quantitatively, the time-resolved release of [Na]total and [K]total 

Figure 6-13 Raw time-resolved measurements of [Na]total and [K]total at a single point of the 
plume of burning solid-fuel particles using LIBS with equivalence ratios of (a) 1.149 (b) 1.252 
(c) 1.287 and (d) 1.336 

0 500 1000 1500
0

3

6

9

12

N
a,

K
_I

nt
en

si
ty

 (a
u)

Combustion Time (sec)

   K_coal
 Na_coal
   K_wood
 Na_wood

0 500 1000 1500
0

3

6

9

12

N
a,

K
_I

nt
en

si
ty

 (a
u)

Combustion Time (sec)

   K_coal
 Na_coal
   K_wood
 Na_wood

0 500 1000 1500
0

3

6

9

12

Combustion Time (sec)

   K_coal
 Na_coal
   K_wood
 Na_wood

N
a,

K
_I

nt
en

si
ty

 (a
u)

0 500 1000 1500 2000
0

3

6

9

12
   K_coal
 Na_coal
   K_wood
 Na_wood

N
a,

K
_I

nt
en

si
ty

 (a
u)

 Combustion Time (sec)

(a) (b)

(c) (d)



Ph. D. THESIS_SCHOOL OF CHEMICAL ENGINEERING_THE UNIVERSITY OF ADELAIDE 

188 

during the burning of solid-fuel particles using LIBS was performed. The release during the 

devolatilisation was investigated quantitatively with four equivalence ratios of 1.149, 1.252, 

1.287 and 1.336, as shown in Figure 6-15. The max 
total ]Na[  during the devolatilisation of wood 

combustion was readily observed to be high, indicating that the emission of abundant Na 

species may lead to significant issues, such as slagging and fouling [6]. This particular 

investigation showed that Na species release during the devolatilisation of wood is significant.  

Comparing the ratios of the peak intensities of atomic Na or K released during the char and 

devolatilisation phases in Figure 5-9 and Figure 5-12 (RK_char/de and RNa_char/de) with those of 

the max 
total ]Na[  and max 

total ]K[  during the char and devolatilisation phases illustrated in Figure 

6-13 (RK_total_char/de and RNa_total_char/de), the RK_char/de and RNa_char/de can be observed to decrease 

with richer equivalence ratios, while a random pattern was found for the RK_total_char/de and 

RNa_total_char/de. This indicates that the RK_char/de and RNa_char/de using AES are affected by flame 

temperatures, which are dominated by equivalence ratios, because the formation of atomic Na 

and K in the flame relies on the atomization conditions [38, 237]. In addition, as well as 

Figure 6-14 By applying calibration, the time-resolved [Na]total and [K]total can be achieved 
using LIBS with equivalence ratios of (a) 1.149 (b) 1.252 (c) 1.287 and (d) 1.336. τd, τc and 
τa have been defined in Chapter 5. 
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certain flame conditions, the RK_total_char/de and RNa_total_char/de (using the LIBS technique) were 

affected by the stability of laser energy and composition variation of the solid-fuel particles. 

In order to reduce the impact of laser energy and any induced uncertainty, therefore, an 

average of 50 images was produced during calibration. Although the composition variation 

proved unpredictable for both methods, the flame condition was the only factor dominating 

the measurement of atomic Na and K using AES (rapid response). Time-resolved intensities 

using AES demonstrated a consistent tendency, while those using LIBS revealed the 

unexpected patent.  

The ratio between the intensities of atomic Na and K using LIBS in the present arrangement 

was meaningless, but the AES measurement provided a qualitative analysis of atomic Na and 

K release that was able to indicate the relative amount of atomic Na and K released during 

combustion. Moreover, the quantitative analysis using LIBS provided evidence that 

significant amounts of Na species, except atomic Na, were released during volatile 

combustion. This may be an issue if a sticky deposit forms on heat transfer surfaces [1, 6] 

when wood is used for combustion. In addition, alkali chlorides were formed leading to 

corrosion with high Cl content during the devolatilisation [1, 178].  

Table 6-4 Summary of the max
total]Na[  and max

total]K[  released from burning solid-fuel particles 

with four equivalence ratios using LIBS; the errors of [Na] and [K] are respectively 2.89 and 
2.69%. 
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Three sub-stages of atomic Na and K release associated with particle shrinkage were observed 

in chapter 5. However, this is not evident in Figure 6-15. This is because the intensities of 

atomic Na and K reported in the previous chapter were dominated by the release rates 

associated with the combustion for the three compositions of wood. The instantaneous records 

of [Na]total and [K]total, on the other hand, show that the max 
total ]Na[  and max 

total ]K[  occur in the 

middle of the wood devolatilisation. This timing is consistent with the shrinking rates 

introduced in Figure 5-28 that the peak intensities of atomic Na and K that occur at the end of 

cellulose combustion (the second sub-stage). Alkali species release increases during 

devolatilisation, and the intensities of atomic Na and K are sensitive to the temperature of the 

volatile flame. The variation between the intensity of atomic Na or K was therefore observed 

to be associated with the three sub-stages of wood devolatilisation. However, [Na]total and 

[K]total also account for other alkali species in the volatile flame, which were not measured in 

Chapter 5, leading to the indistinct boundaries between the three sub-stages. 

Figure 6-15 [Na]total and [K]total during the devolatilisation of burning solid-fuel particles 
with equivalence ratios of (a) 1.149 (b) 1.252 (c) 1.287 and (d) 1.336 
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6.3.2.2 Char Phase 

As indicated in Figure 6-14, the time-resolved [Na]total and [K]total were measured using 

quantitative LIBS with four equivalence ratios. The LIBS results were slightly inconsistent 

with the results reported in Chapter 5. Atomic Na and K release and the shrinkage of 

solid-fuel particles were profiled, as were the periods of char phase increased. Observations 

were that both the release rates and intensities of atomic Na and K decreased with richer 

equivalence ratios. Anomalies in [Na]total and [K]total during the char phase of burning 

solid-fuel particles are presented in Figure 6-16. The anomaly, especially max 
total ]Na[  in coal, 

may be caused by the variation in the compositions of solid-fuel particles.  

For the AES measurement conducted in Chapter 4, the intensities of atomic Na and K release 

were affected by flame temperatures. For example, significant composition variation occurred 

to induce greater intensity of atomic Na for coal, as shown in Figure 5-9b. The profiles 

Figure 6-16 Time-resolved concentrations of [Na]total and [K]total for Loy Yang brown coal 
and pine wood with four equivalence ratios of (a) 1.149 (b) 1.252 (c) 1.287 and (d) 1.336 
during the char phase demonstrate the multiple sub-stages consistent with those proposed in 
Chapter 5. 
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(Figure 6-16) generally exhibit a tendency consistent with the results in Figure 5-9 and 

Figure 5-12 showing richer equivalence ratios inhibit the release of atomic Na and K. 

Therefore, the ash phase was observed to last longer in richer conditions than that in leaner 

ones and the intensities of atomic Na and K were weaker. In addition, the instantaneous 

records of [Na]total and [K]total were not measured simultaneously so that the contribution of 

composition variation was enhanced. However, the time-resolved concentrations 

demonstrated a similar tendency to longer duration during the char phase, which shows in the 

sharp slopes of the temporal histories at the end of char phase and both intensities of atomic 

Na and K were proposed in Chapter 5.  

The temporal histories of [Na]total and [K]total for the combustion of coal and wood char 

particles reveal multiple sub-stages (in Figure 6-16) consistent with those reported in 

Chapter 4 and the quantity of atomic Na released from burning coal particles measured using 

PLIF and associated with the shrinking particles [12]. This indicates that alkali species are 

released in conjunction with shrinking particle size. Although the historical results are not 

identical to those introduced in Chapter 5, due to the variation between the two techniques, 

similarity between the results obtained using the two methods has been observed and is able 

to verify the assumption of the three-shell layer for the combustion of char particles. 

6.3.2.3 Ash Phase 

As introduced in Chapter 5, alkali species release during the ash phase is mainly dominated 

by the flame temperature (the provided thermal energy). The historic results, as shown in 

Figure 6-17, demonstrate a tendency similar to that reported when using AES. Potassium 

species decayed rapidly in the early ash phase revealing similar behaviour that indicates Na 

and K species are dominant in ash and flue gas, respectively. Except for the possible presence 

of Cl favouring K release to form KCl [232, 233, 241-243] (Cl has been released with the 

temperature above 1000 K), the lower thermal pyrolysis energy for K compounds is the likely 
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reason for sharp decay rate of K species.  

For brown coal ash, due to the enormous amount of Al2O3 and significant SiO2 (see Table 

2-1), the possible alkali compounds are sanidine ( 2322 SiO6OAlOK ⋅⋅ ), albite 

( 2322 SiO6OAlONa ⋅⋅ ) and alkali aluminates ( 322 OAlOK ⋅ and 322 OAlONa ⋅ ). The initial Na 

and K release contribute to the thermal pyrolysis of alkali aluminates and then the later release 

through thermal pyrolysis of sanidine and albite. The slow and persistent release profiles are 

the results of the higher pyrolysis energy required. For pine wood, ash mainly contains alkali 

silicates and minor sanidine and albite.  

Given that richer conditions inhibit the release of alkali species during the char phase, similar 

results using quantitative LIBS have been observed, as presented in Table 6-5. Generally the 

release of alkali species during the devolatilisation is not significant compared to the total 

amount released. However, this does not mean the release of alkali species during 

devolatilisation is not critical. In fact, a sticky deposit forms on the heat transfer surfaces [1, 

170] and the deposit reacts with Cl and sulphur (S) favouring corrosion [244]. Furthermore, 

Figure 6-17 Time-resolved profiles of [Na]total and [K]total for Loy Yang brown coal and pine 
wood with four equivalence ratios of (a) 1.149 (b) 1.25 (c) 1.87 and (d) 1.336 during the ash 
phase demonstrate different release behaviours of [Na] and [K]. 
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co-firing with a high Cl biomass favours the release of atomic K during the devolatilisation of 

coal particles to form KCl(g), which is a most stable compound at temperatures above 1000 K 

[245]. Although S additives have been used to reduce alkali chloride [246], this also raises 

another environmental issue, sulphide release. In addition, the release of Na species during the 

devolatilisation of wood is also significant in terms of deposing sticky residue on the heat 

transfer surfaces.  

Table 6-5 shows that generally the richer equivalence ratios inhibit the release of alkali 

species. Due to the variation in the individual solid-fuel particles, anomaly occurs. However, 

the overall tendency in the particle behaviour can still be observed. The particular anomaly 

occurring in the Na release of the burning coal particle with the equivalence ratio of 1.287 

might result from the sudden falling ash particles due to the loose ash structure of burning 

solid-fuel particles. 

6.3.3 Limit of Calibration Curve 

The quantitative LIBS measurement introduced in this chapter is based on the calibration 

curves performed at different [Na] and [K] levels. The curves were corrected by the particular 

sort of signal trapping used in the present experimental arrangement. Although the calibration 

Table 6-5 Release ratios of [Na]total and [K]total for the Loy Yang brown coal and pine wood 
particles during the three combustion stages with four equivalence ratios. Generally, alkali 
species release is inhibited with richer equivalence ratios during the char phase. The errors of 
total Na and K released from burning coal and wood particles are respectively 8.4 and 3.5%. 
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curves successfully calibrated the emission of [Na]total and [K]total at a single point inside the 

plume of burning solid-fuel particles, two particular issues need to be addressed. The first 

issue is the self-absorption of plasma, which has been ignored thus far. It requires further 

investigation to determine the self-absorption coefficient, b, as shown in Eq. 6-7: 

[ ] [ ]  species1  ab 
 species2exp aI XeX ⋅−⋅⋅=                                                Eq. 6-7 

To correct the self-absorption may be achieved by conducting the calibration process with 

very low concentrations of seeded salt solutions as the self-absorption coefficient, b, can be 

considered to be 1. In a typical ICP-AES measurement, the liquid sample is diluted about 

1000 times to reduce self-absorption. Then a slope of the calibration curve is obtained using 

these low concentrations. (the self-absorption coefficient is considered to be 1 within certain 

range of low concentrations of seeders). It is important that the slope represents the value, a2. 

If the calibration curve exhibits a consistent slope, and there is a high concentration regime 

where the self-absorption is not negligible, the individual value of the self-absorption 

coefficient that corresponds to the concentration of the target species can be determined. This 

can be used to correct the individual LIBS intensity shown in Figure 6-11 to eliminate 

self-absorption in the calibration curves.  

The second issue is related to the reliability of the calibration curves. As shown in Figure 

6-12, the concentration range of the calibration process is about 10 ppm. However, the 

max 
total ]Na[  or max 

total ]K[  reaches the level of 45 ppm. In the future, research should be conducted 

into the calibration process using a wider concentration range, such as lower and higher 

concentrations than those used in the current work. When considering the linear calibration 

curves with the same slopes and the max 
total ]Na[  or max 

total ]K[ , which are out of calibration range, 

it is reasonable to extrapolate the calibration curves to the higher concentration regimes.  

6.3.4 Simultaneous Atomic Emission Spectroscopy 
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Given the wavelength difference between the D1 lines of atomic Na and K, the [K] and [Na] 

were not measured simultaneously. Simultaneous atomic emission spectroscopy (SAES) was, 

however, simultaneously performed with using quantitative LIBS technique which 

compensates for the missing information to correlate the release tendency proposed in 

Chapter 5. The temporal histories using SAES with the equivalence ratios of 1.149 and 1.336, 

as presented in Figure 6-18, were observed consistently with the results with AES. The SAES 

measurement shows that the peak emission of atomic Na and K both occurred at the end of 

the char phase which corresponds to the timing of [ ] max
total K  and [ ] max

total Na  using the 

quantitative LIBS (see Figure 6-14). Moreover, the SAES measurement verified the 

time-resolved [K] and [Na] found using the quantitative LIBS, which was consistent with 

results from AES. This indicates that the emission of atomic Na and K is proportional to the 

total release temporally because of the flame temperatures, which are used to atomize Na and 

K species. Furthermore, the flame conditions dominate not only the flame temperatures but 

also the hydrogen reduction process.  

In the current study, the SAES measurement was only applied to provide complementary 

information. In any future experiments, experimental intensities should be correlated using 

SAES with those from quantitative LIBS in order to provide insight into combustion 

Figure 6-18 The SAES measurement was conducted with the quantitative LIBS with the 
equivalence ratios of (a) 1.149 and (b) 1.336. It provides information about Na and K 
released at the end of char phase. 
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modelling of burning solid-fuel particles. 

6.3.5 Limit of Detection (LOD) 

The property of the LIBS technique, the Limit of Detection (LOD), is important and can be 

calculated by [86, 87, 247]: 

S
σ⋅

=
3L.O.D.  

Eq. 6-21 

where, σ is the mean relative standard deviation (R.S.D.) and S is the slope of the calibration 

equation. The values of S for Na and K, which can be obtained from the calibration curves (as 

represented in Eq. 6-19 and Eq. 6-20) are 426.674 and 219.500, respectively, as shown in 

Figure 6-12. The values of σ for Na and K in the current study were calculated to be 

respectively 4.125% and 5.268% for [Na] and [K]. Therefore, the LOD for Na and K were 29 

and 72 ppb, respectively. The LOD was found to be more competitive than other species 

proposed in the literature [51, 55, 58, 247], generally ranging from 0.22 to 136 ppm. Along 

with variations in the methods of measurement, the LOD is related to the type of sample, 

which is flame in this study. For solid samples, more energy is required to break the lattice 

bonding and then to disassociate molecules into atomic form. Significant heat loss is caused 

by the thermal conduction which results in the higher LOD. The energy required for a gaseous 

sample and the heat loss are lower than those for solid and liquid samples, which results in a 

better LOD (smaller values).  

For the sample in flames, the flame provides a high temperature environment which partially 

atomizes the alkali species and the heat loss of LIBS plasma is low. Therefore, the thermal 

perturbation inside the LIBS plasma is weak because the laser energy used to disassociate 

alkali compounds into atomic forms, leading to the better LOD. This is the advantage of LIBS 

when it is employed as a real-time technique to monitor the emission of target species in 
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solid-fuel combustion. 

6.3.6 Release Ratio ([K]/[Na]) 

The release ratio of [K]/[Na] for the burning solid-fuel particles reveals the relationship 

between equivalence ratios and release behaviour. The ratio demonstrates the release of alkali 

species during the burning of solid-fuel particles. The ratio of [ ] [ ] max
total

max
total   NaK , as indicated 

in Figure 6-19, along with the peak release during the phases of devolatilisation and char 

combustion, reveal how equivalence ratios affect the release of alkali species associated with 

burning solid-fuel particles. There appears to be a tendency for richer equivalence ratios to 

inhibit the release of alkali species except for the ratio of [ ] [ ] max
total

max
total   NaK  in the wood 

devolatilisation. Although the ratio was obtained based only on the peak concentrations 

released during the devolatilisation and char phases, it still demonstrates the release scenario. 

It is not clear whether the real regime of Na species release during the wood devolatilisation 

fits the conclusion proposed in Chapter 5. There is the implication that the characteristics of 

the characteristics of the Na species released from the volatile combustion of pine wood are 

more complicated than can be account for by the simple pore structures. The ratio of [K]/[Na] 

for different purposes can provide insight into the modelling of alkali species release during 

solid-fuel combustion. Unlike the release ratio obtained in Chapter 5 demonstrating the 

qualitatively relative intensities between atomic Na and K, the quantitative ratio of [K]/[Na] 

reveals the fundamental properties of alkali species release. However, [K] and [Na] were 

measured using two individual solid-fuel particles. Due to the possible variation between 

solid-fuel particles, the ratio of [K]/[Na] cannot be used to represent the fundamental release 

during combustion. Therefore, it is necessary to choose two results with a similar time frame 

and intensities for a meaningful ratio of [K]/[Na]. 
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Figure 6-14(a) and Figure 6-18(a) reveal that the release profiles of burning wood at the 

equivalence ratio of 1.149 appropriately represent the ratio of [K]total/[Na]total, as indicated in 

Figure 6-20 for the devolatilisation phase and Figure 6-21 for the char and ash phases, 

because of the similarity of the combustion time-frame and the profiles. The three stages of 

release occurred during the devolatilisation at 0~3, 4~17 and 18~22 seconds, consistent with 

expectations outlined in Chapter 5, indicating that Na and K releases were associated with 

the devolatilisation of pine wood combustion.  

The ratio of [K]total/[Na]total presented in Figure 6-21 indicates that the similar behaviour of 

the three-stage release during the char phase of pine wood particles is also consistent with 

other observations. This reveals the intrinsic properties of the alkali species release during the 

combustion of pine wood particles. Moreover, the profile of alkali species release during the 

ash phase similar to that reported in Chapter 5. Although the curve ([K]total/[Na]total) is not 

entirely consistent with the results from the use of AES in Chapter 5 owing to the variation 

between pine wood particles, it still demonstrates the fundamental tendencies to be observed 

in alkali species release. For future investigations (sodium and potassium releases are 

simultaneously measured) about the ratios of [K]/[Na] for solid-fuel particle combustion, 

accurate and reliable results can be experimentally determined.

Figure 6-19 Equivalence ratios, namely 1.149, 1.252, 1.287 and 1.336, dominate the release 

ratio of [ ] [ ] max
total

max
total   NaK  for burning solid-fuel particles. The error estimated based on the 

uncertainty of the calibration curves was 5%. 
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Figure 6-20 Time-resolved release ratio of [K]total/[Na]total for the devolatilisation of a 
burning pine wood particle with the equivalence ratio of 1.149 

Figure 6-21 Time-resolved release ratio of [K]total/[Na]total for the char and ash phases of a 
burning pine wood char particle with the equivalence ratio of 1.149 
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6.4 Conclusions 

Laser-induced breakdown spectroscopy (LIBS) as used in the present study was shown to be a 

feasible technique to measure [Na] and [K] released during the instantaneous burning of 

solid-fuel particles. The LIBS measurement possesses the advantages of a laser technique, 

such as time-resolved, non-intrusive and quantitative measurements. Compared to AES and 

PS techniques, the LIBS technique is capable of quantitative measurement. A particular 

characteristic of the LIBS technique is unique. The total concentration of target species can be 

quantitatively investigated in a single location, which cannot be done with LIF. However, the 

spatial detection of [Na] and [K] using LIBS is not applicable in burning solid-fuel particles. 

For the element detection using conventional LIBS, the chosen transition (wavelength) of the 

target species is usually persistent spectral lines other than the major resonant D1 lines in 

order to reduce self-absorption. However, the chosen wavelengths for Na and K in the present 

arrangement are the D1 lines (589.592 and 769.896 nm, respectively) because other persistent 

lines have not been observed. The gate delay and gate width were optimized to be 45 and 5 μs, 

respectively, reducing spectral interferences, such as the hot water lines that overlapped the D1 

line of atomic K and the natural emission of atomic Na and K emitted from the seeded flames. 

The critical absorption, nominated as signal trapping, was identified and expressed using the 

Beer-Lambert law. Using LIBS measurement has provided the practical calibration curves 

able to measure alkali species release quantitatively. Although the measured max
total]Na[  and 

max
total]K[  exceeded the calibration range, it was reasonable to extrapolate the calibration from 

the concentration range. 

The time-resolved histories of [Na]total and [K]total released from the burning solid-fuel 

particles of Loy Yang brown coal (23 ± 3 mg, approximately spherical 3 mm diameter) and 

pine wood pellets (63 ± 3 mg, approximately spherical 4 mm diameter), under four 
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equivalence ratios of 1.149, 1.252, 1.287 and 1.336 in a premixed laminar methane flame 

were investigated. Three stages of devolatilisation, char and ash were observed, which was 

consistent with results reported in Chapter 5. 

The max
total]Na[  and max

total]K[  released during the devolatilisation of the burning coal particles 

were found to reach the levels of 6.5 and 4 ppm, respectively. Moreover, the max
total]Na[  and 

max
total]K[  released during the devolatilisation of the burning pine wood particles were found to 

be 17.5 and 5 ppm, respectively. This is first time that alkali species release during the 

devolatilisation phase has been quantitatively measured. The max
total]Na[  and max

total]K[  released 

during the char phase of the burning coal particles were found to reach the levels of 22.8 and 

6.67 ppm, respectively. In addition, the max
total]Na[  and max

total]K[  released during the char phase 

of the burning pine wood particles were found to be 21.1 and 45.3 ppm, respectively. The 

max
total]Na[  released during the devolatilisation of a burning pine wood particle was found to be 

critical and a possible factor in significant corrosion and slagging in commercial power plants. 

The richer equivalence ratios were observed to generally prohibit alkali species from being 

released during the char phase of burning solid-fuel particles. The time-resolved 

concentrations of alkali species released from burning wood particles were associated with 

particle shrinkage. The three sub-stages of [Na]total and [K]total released from burning wood 

char particles were consistent with results reported in Chapter 5. In the current study, the 

temporal concentrations of [Na]total and [K]total were not measured simultaneously so that the 

ratio, [K]total/[Na]total obtained with four equivalence ratios, can not entirely represent the 

actual ratio measured in the same solid-fuel particle. However, the ratio obtained with the 

equivalence ratio of 1.149, due to the similar time frames of Na and K, still demonstrates the 

fundamental properties of alkali species released from burning solid-fuel particles. 

The values of LOD for [Na]total and [K]total in the present experiment were 29 and 72 ppb, 
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respectively, which were significantly lower than those reported in the literature [51, 55, 58, 

247]. This result was due to the target alkali Na and K being tested as in the gaseous samples, 

which were flames in this study. 
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CHAPTER 7  

Conclusions 

The aim of the study was to assess three optical techniques used to detect metals in high 

temperature environments. The five specific aims addressed in this thesis were:  

(1) to demonstrate the feasibility of polarisation spectroscopy to be used for the metal 

detection, in particular atomic sodium (Na I) or iron (Fe I), in strong background 

environment 

(2) to assess the feasibility of polarisation spectroscopy to be used for the quantitative 

measurement of atomic Na 

(3) to assess the capability of existing atomic emission spectroscopy technique in the 

detection of atomic Na and potassium (K) released from the burning solid-fuel particles 

(4) to develop the quantitative LIBS technique to be employed to detect the time-resolved [Na] 

and [K] released from the burning solid-fuel particles 

(5) to assess the advantages and disadvantages among three techniques for metal detection in 

high temperature environment. The characteristics comparison among three spectroscopic 

techniques is shown in Table 7-1. 

In this work, the PS measurement was divided into three parts: 

 develop the mathematical equation 

 detect atomic Na released from burning solid-fuel particles 

 detect atomic Fe in the atmospheric welding fume.  
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THE EQUATION 

The wavelengthscan results of atomic Na in the premixed laminar methane flame with rich 

conditions have been successfully simulated by Eq. 3-5: 
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Compared to conventional PS (only the first two parts, including the baseline and pure PS 

signal), the PS measurement employed in this work experiences the absorption, which is 

represented in the third part of Eq. 3-5. To use the second part of the equation, the pure PS 

signals can be extracted. It was found that power broadening is significant in the low 

concentration of atomic Na. The FWHM of atomic Na in a pure PS lineshape with a strong 

fluence of pump beam varies with concentrations of seeded Na. Eventually the collision 

dominates the power broadening in the low pump beam fluence. Moreover, the power 

broadening has also been verified by examining the FWHM under each concentration varied 

Table 7-1 The characteristics comparison of three spectroscopic techniques employed in this 
work are listed. The term “Achievable” represents the theoretical feasibility with further 
effort but is not applicable in this work. The cost is only compared among three techniques. 
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with the pump beam fluences. The FWHM under 0.127×1018 atoms/m3 with lower fluences is 

smaller and becomes broader with the strong pump beam fluence indicating the occurrence of 

power broadening. 

DETECTION OF ATOMIC SODIUM 

A specific wavelength chosen from the wavelengthscan results recorded the time-resolved 

history of atomic Na released from burning solid-fuel particles. Due to the nonlinearity of PS 

measurement, a quantitative measurement using PS is not applicable. However, the historical 

record of atomic Na released from burning solid-fuel particles was observed, especially the 

result of atomic Na released from volatile flames. 

Simultaneous laser absorption measurement provided the absolute concentration of atomic Na 

in the seeded flame. The measured absolute concentration (ns), in comparison with the total 

amount of seeded Na, supports the value of ratio, ε, which was assumed to be 0.02 (2%) for 

atomic Na present in the rich premixed laminar methane flames used in this work. Detailed 

information has been presented in Table 3-4. 

DETECTION OF ATOMIC IRON 

The PS measurement, as an application, was employed to detect atomic Fe in atmospheric 

welding fumes. It was observed that the Stark shift of atomic Fe was present in the 

wavelengthscan result. The wavelengthscan results have also been simulated using Eq. 3-5. 

Due to presence of the Stark shift, the wavelengthscan of atomic Fe in the atmospheric plasma 

comprises two regimes, which can both be simulated by Eq. 3-5. The transition, 385.990 nm, 

was selected to investigate the behaviour of atomic Fe dependent on the welding currents, 

content of buffer gases, radial position within the welding fume and energies of the pump 

beam. It was found that the welding current required to generate the same population of 

atomic Fe is lower in the shielding gas He. The low welding current applied in the buffer gas 
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He implies that it may reduce the hazard of welding in the workplace, and reduce energy 

consumption. 

BURNING SOLID-FUEL PARTICLES 

The historic records of atomic Na and K released from the burning of solid-fuel particles was 

measured simultaneously and revealed instantaneous shrinkage. The combustion stages were 

found to be consistent with those observed using PS. The shrinking records of burning 

solid-fuel particles imply a three-layered burning model, and the shrinkage is consistent with 

the pore structures formed during devolatilisation [152].  

The devolatilisation phase of burning coal and wood particles last for 12 and 22 seconds, 

respectively, in four equivalence ratios of 1.149, 1.252, 1.287 and 1.336, except for 25 

seconds for wood particles burnt in the condition of 1.336. The timeframe of the char phase 

becomes longer as conditions become richer. Moreover, the intensities of atomic Na and K 

are weaker when solid-fuel particles are burnt in the richer conditions. It was observed that 

the peak releases of atomic Na and K both occur at the end of the char phase. Although the 

AES measurement proved sensitive to atomic Na and K, it was not applicable for quantitative 

measurement in the present experimental arrangement. 

The quantitative measurement of the total Na ([Na]total) and K ([K]total) released at a single 

point in the plume of burning solid-fuel particles using LIBS was achieved. To achieve the 

quantitative measurement using LIBS, a particular type of absorption, termed as signal 

trapping, was identified. The signal trapping occurring in the calibration process is caused by 

the outer seeded flame where atomic Na or K is present. The correction of the signal trapping 

is based on the Beer-Lambert law. The two calibration curves of [Na]total and [K]total, as are 

presented in Eq. 6-19 and Eq. 6-20: 

NaNa CI ⋅= 674.426                                                        Eq. 6-19 
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KK CI ⋅= 500.219                                                         Eq. 6-20 

reveal good linearity indicating that the signal trapping dominates the self-absorption. If the 

self-absorption is considered, the accuracy of quantitative measurement of [Na]total and [K]total  

released from burning solid-fuel particles is more precise.  

The max
total]Na[  and max

total]K[  released during the devolatilisation of burning coal particles were 

found to reach the levels of 6.5 and 4 ppm, respectively. Moreover, the max
total]Na[  and max

total]K[  

released during the devolatilisation of burning pine wood particles were found to be 17.5 and 

5 ppm, respectively. This is the first time the monitoring of the release of alkali species during 

the devolatilisation phase has been quantitatively measured. The max
total]Na[  and max

total]K[  

released during the char phase of the burning coal particles were found to reach the levels of 

22.8 and 6.67 ppm, respectively. In addition, the max
total]Na[  and max

total]K[  released during the 

char phase of the burning pine wood particles were found to be 21.1 and 45.3 ppm, 

respectively. It was observed that the amount of max
total]Na[  released during the devolatilisation 

of a burning pine wood particle was critical in that max
total]Na[  in sufficient quantities may 

cause significant corrosion and slagging in commercial power plants. The max
total]Na[  and 

max
total]K[  released during the devolatilisation and char phases were summarized in Table 6-4. 

The richer equivalence ratio inhibits the release of alkali species during combustion in four 

conditions discussed in this work. The pore structure formed during the devolatilisation phase 

dominates the combustion rate [152], which relates to the release rates of alkali species. The 

variation between solid-fuel particles was observed using the LIBS and SAES techniques. 

Although the variation of alkali content between each solid-fuel particle results in the 

quantitative analysis being variable, the tendency can be still observed. The richer 

equivalence ratio was found to inhibit the release of alkali species during the char phase of the 
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burning of solid-fuel particles, as shown in Table 6-5. 

The LOD is a crucial characteristic of quantitative LIBS measurement representing the 

accuracy of the calibration curves. The LOD is sensitive to the types of samples being used: 

solid, liquid, aerosol or gas. Generally, LOD is better in gaseous samples because less energy 

is lost as there is no need to vaporize and dissociate the samples. For example, Yamamoto et 

al. [55] reported that the LODs of Ba, Be, Pb and Sr in soil samples are respectively 265, 93, 

298 and 42 ppm. Unlike the poor LOD for soil samples, the LOD of [Na]total and [K]total in the 

flames, which are gaseous media, for the present LIBS arrangement were respectively 29 and 

72 ppb due to the low dissociation energy required in the flame. Moreover, the flame medium 

forms a temperature barrier that reduces heat loss for LIBS plasma. Therefore, the thermal 

variation of LOD in gases is weaker when compared to LIBS applied to solid and liquid 

samples. 

In summary, the optical techniques employed in this work, either qualitative or quantitative 

analysis, demonstrate the characteristics and limits to each technique. These results provide a 

comprehensive investigation of the metal detection in high temperature environments. The PS 

technique is able to suppress background noise for metal detection, such as Na and Fe, in high 

temperature environments. It can also provide a time-resolved measurement of atomic Na 

released from burning solid-fuel particles. The quantitative PS measurement in the present 

optical arrangement is not applicable, however. 

Compared to laser diagnostic techniques, the AES technique provides a sensitive, rapid and 

simple measurement for the detection of alkali metals in flames. The intensities of atomic Na 

and K were the summation of radiation emitted from the entire flame, which led difficult in 

determining the emission volume. Therefore, quantitative measurement using the AES optical 

arrangement described in this study is not applicable. However, the LIBS technique employed 

in flames with appropriate calibration curves provides the quantitative measurement of total 

Na and K at a single location within flames. 
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Outlook 

For the further investigation using quantitative LIBS, the accuracy may be improved by 

conducting a broad range of calibration, particularly when using rather low concentrations of 

calibration references due to the occurrence of weak self-absorption. When considering a 

target species at a highly populated level, the correction of self-absorption may improve the 

reliability of the calibration curves. The improvement of calibration curve reliability could 

complete the capability of quantitative LIBS in combustion applications. Moreover, other 

species released during fuel combustion may also be quantitatively determined. Mercury, for 

example, is a serious issue when burning coal and its control would benefit from more 

accurate measurement. 

Quantitative PS us another area ripe for further research, which may be achievable by 

applying a mathematical equation. The instantaneous concentration of target species, 

extracted from a mathematical equation, may be achievable. This would demonstrate the 

advantages of PS measurement for every species released from fuel combustion. However, 

quantitative PS requires a fast-scan laser system in order to achieve one wavelengthscan 

(about 3 nm) within a few micro-seconds. 
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Appendix 

A. Seeding Concepts 

A-1. Cylindrical Premixed Laminar Burner 

 

Figure A-1 Schematic cylindrical premix laminar burner employed in Chapter 6 (Prepared 
by Shaun Chan) 
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A-2 Seeding Rate of Salt 

The seeding rate is critical to calculate the temporal number density of seeded target species 

(ns, ppm or atoms/m3) in the flame that is the fundamental reference of calibration process. 

The calculation concept of temporal number density is eligible for the estimation of temporal 

concentration of the target species in the entire flame. It is assumed that the calculation is 

uniform within the flame. It should be aware that the ns specifically indicates the total 

concentration of [Na] ([Na]total) and [K] ([K]total) instead of the seeded salt molecule. This can 

avoid the variation between different alkali salts regarding the difference molar mass of 

various applicable alkali salts.  

The chosen alkali salts of [Na] and [K] are sodium sulphite (Na2SO3) and potassium sulphate 

(K2SO4). In order to determine the seeding rate based on the constant seeding air flowrate, the 

consumption amount of salt solution in a four-hour seeding process was measured in the 

volume variation before and after the experiment with a high accuracy measuring jug. The 

experimental consumption rate of the seeded salt solution, %. 174hrml12 ± , was repeated 

five times and the standard deviation could be determined. Furthermore, condensation was 

considered. The condensed solution on the bottom of the burner flowed back to the nebulising 

system during the calibration process. This can improve not only the accuracy of calculated ns 

but also the stability of premixed laminar seeded flame. 
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B. Analysis of solid-fuel Particles 

 

  
                                               NOTE:   
     This appendix is included on pages iii-v of the print copy  
       of the thesis held in the University of Adelaide Library.
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C. Quarter-wave Plate 

In the case of linearly polarised pump beam, a quarter-wave plate (QwP) introduced in 630HFigure 

3-1 was applied. To achieve this, the specific arrangement has been revealed, as shown in 

631HFigure C-1. Given that the angle, α, must be satisfied with, the distance R between the Point 

A and C is related to the chosen distance d between the Point A and B. Therefore, once the d 

is determined, it is simple to align the optics checking if the reflection of pump beam locates 

in the Point C leading to the sufficient distance, which can be calculated using d·tan(2α), to 

the Point A 

 

 

 

Figure C-1 Arrangement of the quarter-wave plate and the polariser in the path of pump beam 
(PB) provides the linear polarisation of pump beam. α = 6.3∘in the present arrangement for d 
= 200 mm 
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D. ND Filter 

The transmittance (TND) of various models of Natural Density filter (ND filter) can be 

obtained, as follows: 

TND = 10-x/100            

                 Eq. D-1 

where, x is the model number, namely 0, 10, 20, 30, 40, 50, 80, 100, 200 and 300. 

E. Kramers-Kronig relation 

The Kramers–Kronig relation is mathematical properties representing the real and imaginary 

parts of any complex function, which is analytic in the upper half-plane. This relation 

represents the real and imaginary parts of response functions in physical systems. The 

causality implies the analyticity condition is satisfied. Conversely, analyticity implies 

causality of the corresponding physical system. 

 



Ph. D. THESIS_SCHOOL OF CHEMICAL ENGINEERING_THE UNIVERSITY OF ADELAIDE 

viii 

F. Polarisation Dependent Numerical Factor  

 

 

Table F-1 The factor 
if JJ ←ζ  gives the J dependence of the polarisation signal for circular 

polarised light 

Table F-2 The factor 
if JJ ←ζ  gives the J dependence of the polarisation signal for linear 

polarised light 
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G. Dichroism 

Dichroism is the selective absorption for two orthogonal polarisation components of incident 

electromagnetic radiation. If the characteristic modes of polarisation of propagation in the 

medium are linearly polarised, selective absorption of one linearly polarised state is termed as 

linear dichroism. Similarly, for characteristic propagation of orthogonal circularly polarised 

states, the required term is defined as circular dichroism. 

 

 

H. Birefringence 

A substance is birefringent indicating it exhibits different refractive indices for two orthogonal 

polarisation components of incident radiation. Regarding dichroism, the birefringence may be 

linear or circular for the cases of linearly or circularly polarised characteristic modes of 

propagation in the medium respectively.  
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I. Matlab Codes 

I-1 Image Process of a 9x9 Matrix 

leftCirclePosition = [0 0]; 

midCirclePosition = [190 0]; 

rightCirclePosition = [460 0]; 

leftCircleSize = [170 200]; 

midCircleSize = [210 200]; 

rightCircleSize = [115 200]; 

  

leftCircleCrop = [leftCirclePosition leftCircleSize]; 

midCircleCrop = [midCirclePosition midCircleSize]; 

rightCircleCrop = [rightCirclePosition rightCircleSize]; 

  

file = ['C:\sample.tif']; 

 

K = 2334; 

 

wcircleSum = zeros(K, 3); 

 

for i = 1:K 

    image    = double(imread(file,i)); 

    leftCircleImage   = imcrop(image,leftCircleCrop); 

    maxLC = max(max(leftCircleImage));    

    for m = 1:size(leftCircleImage, 1) 

        for n = 1:size(leftCircleImage, 2) 

            if (leftCircleImage(m,n) == maxLC) 

                 maxLC = [m,n]; 

             end 

        end 

    end 

    tempLC = imcrop(leftCircleImage,[maxLC(2)+-4, maxLC(1)+-4,8,8]); 

     

    midCircleImage   = imcrop(image,midCircleCrop); 
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    maxMC = max(max(midCircleImage)); 

    for m = 1:size(midCircleImage, 1) 

        for n = 1:size(midCircleImage, 2) 

            if (midCircleImage(m,n) == maxMC) 

                 maxMC = [m,n]; 

            end 

        end     

    end 

    tempMC = imcrop(midCircleImage,[maxMC(2)+-4, maxMC(1)+-4,8,8]); 

     

    rightCircleImage   = imcrop(image,rightCircleCrop); 

    maxRC = max(max(rightCircleImage)); 

    for m = 1:size(rightCircleImage, 1) 

        for n = 1:size(rightCircleImage, 2) 

            if (rightCircleImage(m,n) == maxRC) 

                 maxRC = [m,n]; 

            end 

        end 

    end 

    tempRC = imcrop(rightCircleImage,[maxRC(2)+-4, maxRC(1)+-4,8,8]); 

  

    leftCircleSum=sum(sum(tempLC)); 

    midCircleSum=sum(sum(tempMC)); 

    rightCircleSum=sum(sum(tempRC)); 

    wcircleSum(i,:) = [leftCircleSum midCircleSum rightCircleSum]; 

end 
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