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Abstract

Background: Computational drug design approaches are important for shortening the time and reducing the cost
for drug discovery and development. Among these methods, molecular docking and quantitative structure activity
relationship (QSAR) play key roles for lead discovery and optimization. Here, we propose an integrated approach
with core strategies to identify the protein-ligand hot spots for QSAR models and lead optimization. These core
strategies are: 1) to generate both residue-based and atom-based interactions as the features; 2) to identify
compound common and specific skeletons; and 3) to infer consensus features for QSAR models.

Results: We evaluated our methods and new strategies on building QSAR models of human acetylcholinesterase
(huAChE). The leave-one-out cross validation values q2 and r2 of our huAChE QSAR model are 0.82 and 0.78, respectively.
The experimental results show that the selected features (resides/atoms) are important for enzymatic functions and
stabling the protein structure by forming key interactions (e.g., stack forces and hydrogen bonds) between huAChE and
its inhibitors. Finally, we applied our methods to arthrobacter globiformis histamine oxidase (AGHO) which is correlated to
heart failure and diabetic.

Conclusions: Based on our AGHO QSAR model, we identified a new substrate verified by bioassay experiments
for AGHO. These results show that our methods and new strategies can yield stable and high accuracy QSAR
models. We believe that our methods and strategies are useful for discovering new leads and guiding lead
optimization in drug discovery.
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Background
As the development in the pharmaceutical chemistry,
the computer-aided drug design is a promising direction
for shortening the time and reducing the cost for drug
discovery. Molecular docking and quantitative structure
activity relationship (QSAR) are the important technolo-
gies for identifying new leads and lead optimization [1–4].
However, these two methods suffer several challenges: 1)
the scoring functions of docking tools are often unable to

obtain a high relationship between predicted energies and
biological activity values (e.g., binding affinity); 2) docking
tools are often designed for one-target paradigm and the
scoring methods cannot consistently identify true leads
[5]; 3) the performance of 3D QSAR (e.g., CoMFA and
COMBINE), highly depends on the superposition of
known compound structures and molecular descriptors;
4) the accuracy and selected features of QSAR models are
often unstable and lack of biological meanings [1, 4].
To address these issue, we propose an integrated ap-

proach by combining in-house tool, GEMDOCK [6, 7],
evolutionary algorithms (EAs) [8–10], and partial least
square (PLS) regression, with new strategies to construct
QSAR models for discovering new leads and guiding lead
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optimization. GEMDOCK has yielded comparable mo-
lecular docking and screening performance to other
docking tools, such as FlexX and GOLD [6]. In addition,
GEMDOCK has been successfully applied to the discovery
of novel inhibitors and binding mechanisms for some
target proteins [4, 11–14]. Here, we applied genetic
algorithms (GAs) [10], simulating the natural selection
mechanisms, and PLS regression, which is a simple
statistical method, to select the key features (i.e., core
functional groups of inhibitors) from protein-ligand
interactions for improving accuracies of QSAR methods.
To infer the protein-ligand interaction for QSAR and lead

optimization, we have developed three core strategies. First,
we used GEMDOCK to predict protein-ligand complexes
for generating residue-based and atom-based interaction
profiles as the features of QSAR models. Second, we statis-
tically inferred consensus features from the selected interac-
tions of preliminary QSAR models built by GEMPLS and
GEMkNN. These consensus features are often able to
reflect biological meanings, such as the key residues for
evolutionary conservation, protein functions, and ligand
binding. Third, we identified common/specific skeletons of
the inhibitors for lead discovery and optimization. In gen-
eral, the common skeletons, highly shared by the inhibitors
of a target protein, form the basic scaffolds to interact with
key residues which often occupy the critical pocket of a
target protein. Conversely, the specific skeletons, which are
the substitution function groups occupying specific sub-
sites, of these inhibitors can be used for lead optimization
to increase the potency.
We evaluated our method and new strategies on QSAR

models of human acetylcholinesterase (huAChE), which is
one of promising therapeutic targets for central nervous
system diseases, such as Alzheimer's disease [15]. The q2

and r2 values of our huAChE QSAR model are 0.82 and
0.78, respectively. In addition, the selected features
(resides/atoms), forming key interactions with its in-
hibitors, play the key role for protein functions and
structures. Furthermore, we applied our method to
arthrobacter globiformis histamine oxidase (AGHO),
which is important for metabolisms of biogenic primary
amines and is correlated to heart failure [16] and diabetic
patients [17, 18]. Using our QSAR model, we identified a
new substrate evaluated by bioassay experiments. We
believe that our methods and strategies are useful for
building QSAR models, discovering leads, and guiding
lead optimization.

Methods
huAChE and AGHO
Acetylcholinesterase (AChE, carboxylesterase family of
enzymes) catalyzes the hydrolysis of acetylcholine (ACh)
in cholinergic synapses which are important for neuro-
muscular junctions and neurotransmission. To evaluate

our method and compare with other methods, we col-
lected 69 inhibitors with IC50 of huAChE from previous
work [19], which divided the set into the train set (53
inhibitors, Additional file 1: Table S1) and testing set
(16 inhibitors, Additional file 2: Table S2). In addition,
we applied our methods to AGHO, which is the member
of CuAOs family, to construct its QSAR model. Based on
our model, we identified a new substrate of AGHO and
verified by bioassay experiments.

Overview for building QSAR models
We integrated GEMDOCK with GEMPLS/GEMkNN
and common protein-ligand interactions (considered as
the hot spots of a target protein) for building QSAR mod-
eling (Fig. 1). To identify the protein-ligand interactions
for QSAR model, we developed three strategies: i) use
both residue-based and atom-based as the QSAR features;
ii) inferring consensus features from preliminary QSAR
models; iii) identifying compound common/specific skele-
tons from the compound set. Based on these strategies,
our method yielded a stable QSAR model which is able to
reflect biological meanings and guide lead optimization.
The main steps of our method are described as follows: 1)
prepare the binding site of the target protein; 2) prepare
and optimize compound structures using CORINA3.0
[20]; 3) predict protein-compound complexes and gen-
erate atom-based and residue-based interactions using
GEMEDOCK; 4) identify common/specific ligand skele-
tons by compound structure alignment; 5) create N (here,
N = 30) preliminary QSAR models using GEMPLS and
GEMkNN based on leave-one-out cross validation; 6)
statistically identify consensus features using these prelimin-
ary QSAR models; 7) create QSAR models using GEMPLS
and GEMkNN with consensus/specific features. The
leave-one-out cross validation uses one inhibitor as
the test set and the remaining inhibitors as the training
set, and this procedure is repeated n times, where n is the
number of inhibitors.

GEMDOCK and interaction profiles
Here, we briefly described GEMDOCK for molecular
docking and generating atom-based and residue-based in-
teractions. For each inhibitor in the data set, we first used
GEMDOCK to dock all inhibitors (Additional file 1:
Table S1) into the binding site of target protein (huAChE).
GEMDOCK is an in-house molecular docking program
using piecewise linear potential (PLP) to measure intermo-
lecular potential energy between proteins and compounds
[6]. GEMDOCK has been successfully applied to identify
novel inhibitors and binding sites for some targets
[4, 11–14]. The PLP is a simple scoring function and
is comparable to some scoring functions for estimating
binding affinities [21–23].
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Based on these docked poses, we used GEMDOCK to
generate both residues-based and atom-based interaction
as the features. The atom-based and residue-based
interaction profiles of target-compound complexes
were extracted by applying this PLP. The profiles include
electrostatic, hydrogen-bonding, and van der Waals inter-
actions between the compounds and the protein. Figure 2a
shows 2118 atom-based features and 516 residues-based
features on 86 residues for 14 inhibitors. Some residue
features, such as VDW force (V) with side chain (S) of
W84, Y121, W279 and F330, of these 14 docked poses
were consensus with tcAChe bounded ligand E2020.
According to the residue-based and atom-based features,
we can cluster these 14 compounds into three groups
(Fig. 2b). We show several representatives of docked com-
pounds in each group and the docked compounds in the
same group contain the common skeletons.
The inhibitors with the reference bounded ligand E2020

in the group 1 form similar residue-based and atom-based
features. The residue-based and atom-based features of
inhibitors in the group 2 have significantly different in
main chain (M) of W84 and side chain (S) of W279 from
the ones of inhibitors in group 1. In addition, we can find
that the common skeletons of the inhibitors in group 2
(yellow circles) are different from the ones of inhibitors in
group 1 (red circle). The group-2 inhibitors contain the N
atom in bicyclic (yellow circle), but group-1 inhibitors loss
the N atom in bicyclic and connect the O atom (red circle)

(Fig. 2b and Additional file 1: Table S1). The common
skeletons of inhibitors in group 3 are different with the
other groups. The skeleton (purple circle), which forms
the repulsive forces, of group-3 inhibitors is longer than
the ones of other groups. GEMDOCK and the datasets
are freely accessed at http://gemdock.life.nctu.edu.tw/
dock/download.php.

Modeling active form structure of huAChE
The availability of protein X-ray structure with suit-
able induced form is important for molecular docking
and QSAR. We observed the structures of human
AChE (huAChE, PDB entry 1B41 [24], without ligand-
bounded complex) and Torpedo californica AChE
(tcAChE, PDB entry is 1EVE [25]) with ligand (called
E2020) co-crystallized complex by aligning these two
structures with maximal overlap of Cα atoms. The
sequence identity is 57% and the root mean square de-
viation (RMSD) value of these two structures is 0.88 Å
(Fig. 3). We found these two structures with signifi-
cant conformation change for the residue Y337 (resi-
due number in huAChE, Fig. 3a), which is the gate for
protein function and inhibitor binding [25–27]. There-
fore, we used both huAChE and tcAChE to model the
active-form conformation of huAChE. We first con-
structed the huAChE-E2020 complex by inserting
E2020 into huAChE structure. We then added hydrogen
atoms to this huAChE-E2020 complex and minimized this

Fig. 1 The main steps of our method. For a target protein, we first use in-house docking tool, GEMDOCK, to identify the potential leads with
protein-lead complex and generate protein-lead interaction profiles used as the QSAR features. GEMPLS and GEMkNN are applied for feature
selection and building preliminary QSAR models to statistically yield the consensus features. Based on known lead structures and consensus interaction
features, we infer the ligand common/specific skeletons to construct robust QSAR models and lead optimization
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A

B

Fig. 2 Interaction profiles and typical docked poses of tcAChE using GEMDOCK. a The atom-based and residue-based features of 14 docked
inhibitors of tcAChE (PDB entry 1EVE) using GEMDOCK. These 14 inhibitors can be clustered into 3 groups based these features. b Typical
docked poses of these three groups, including Group 1 (Ligands 24, 25, and), Group 2 (Ligands 1, 2, and 3), and Group 3 (Ligands 44 and 45).
The structures and Ligand IDs of these 8 inhibitors are shown in Additional file 1: Table S1

A B

Fig. 3 Structure simulation and docked pose of huAChE. a The structural alignment of huAChE (PDB entry 1B41, yellow), tcAChE (PDB entry 1EVE
with bounded ligand E2020, pink) and modeled structures (green). The main difference among the three structures is the side-chain conformation
of Y337 (residue number of 1B41, relatively to F330 in 1EVE). In the structure of 1EVE, the F330 was in active-form position to stabilize the ligand
and protein-ligand complex. The structure of 1B41 is a close form and Y337 is not an active-form conformation. The conformation of Y337 is in
the active position in the modeling structure. b The docked pose (white) of E2020 is similar to the position of the ligand (pink) in tcAChE x-ray
structure (1EVE).ing materials
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structure by using SYBYL7.0 modeling software package.
Finally, we used this minimized huAChE-E2020 complex
for the molecular docking and QSAR model.

GEMPLS (GEM-partial least squares)
GEMPLS is a QSAR method by combining the statistical
method (PLS-regression) and Gas which select the fea-
tures from protein-ligand interactions. In GEMPLS, the
chromosomes consist of randomly selected features and
the latent variable (lv), which appends to the chromo-
some to find optimum number of latent variables. The
squared cross-validated correlation coefficient q2 in the
PLS analysis is used as the objective function measuring
the performance using the selected features of the
chromosome. GA selected the features with the highest
q2 in the PLS analysis. To improve the performance of
GEMPLS for QSAR model building, we adopt Mahalanobis
distance to discriminate significant features and designed a
biased genetic mutation, that is, the significant feature i
with higher Mahalanobis distance will get the higher Pi, to
replace the uniform mutation. Here, Mahalanobis distance
is define as M2 = (v − μ) ' ∑− 1(v − μ), where M is the
Mahalanobis distance from the feature vector v to the
mean vector μ, Σ is the covariance matrix of the features.
We set the threshold of Mahalanobis distance to 10 by
testing our method with various threshold values for
achieving optimal performance. Experimental results show
that Mahalanobis distance can successfully discriminate
significant features and reduce the ill effect of selecting
numerous selected features.

GEMkNN (GEM- k-nearest-neighbor)
GEMkNN integrated GAs and kNN, which is a concep-
tually simple and nonlinear approach. GEMkNN is simi-
lar to GEMPLS and the main difference is that we used
the k-nearest neighbor algorithm to replace PLS. In
GEMkNN, the chromosomes consist of randomly selected
features and the number of k nearest compounds. The
similarities between the compounds are evaluated by
Mahalanobis distance. The squared cross-validated correl-
ation coefficient q2 in the kNN analysis is used as the
objective function of GAs.

Identifications of consensus features
For building QSAR models, we found that the perform-
ance and the selected features of both GEMPLS and
GEMkNN are often unstable when the number of fea-
tures is over 100. To address this issue, we proposed the
strategy to select consensus features by executing both
GEMPLS and GEMkNN 30 times (Fig. 4). Based on the
selected features in these 60 times, we counted the se-
lected times (Ni) for each feature i, and then calculated
the average (μ) and standard deviation (σ) of all features.
Furthermore, we selected the feature i as the candidate

feature if its Ni ≥ (μ-σ) and these features are considered
as the consensus feature candidates (e.g., X1, X2, and X6

in Fig. 4b). Finally, GEMkNN and GEMPLS employed
these consensus feature candidates as descriptors to con-
struct the QSAR models.

Performance evaluation
We evaluated the accuracies of QSAR models using cross-
validated correlation coefficient (q2) and the standard de-
viation of error of prediction (SDEP). They are defined as
follows:

q2 ¼ 1−
P

yi−ypred;ið Þ2P
yi−yð Þ2 and SDEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
yi−ypred;ið Þ2
N

r

where yi and ypred,i are the experimental and predicted
activities, respectively, of the compound I; y and N are
the average biological activities and total number of
inhibitors in the data set, respectively. The highest q2

and lowest SDEP can be used to assess the predictability
of a QSAR model.

Results and Discussions
Modeling structure of huAChE and evaluation GEMDOCK
on AChE
Figure 2a shows the structures of the modeled (green)
and crystal structures of huAChE (1B41, yellow) and
tcAChE (1EVE, pink). The RMSD values are 0.24 Å and
0.89 Å between modeled structure and 1B41 and 1EVE,
respectively. In the active site, the main difference among
the three structures is the side-chain conformation of
Y337 (residue number in huAChE, related to F330 in
tcAChE). The complex structure of tcAChE shows that
the residue F330 is induced into a wide range of confor-
mations and plays a key role as the gate for protein func-
tion and inhibitor binding [25–27]. This result implies
that Y337 in huAChE should be flexible when the protein
binds with different inhibitors. In addition, most docked
poses of huAChE inhibitors were not correct to form the
stack force with Y337 using the crystal structure (1B41) of
huAChE. Based on these results, we used both crystal
structures of huAChE and tcAChE (1EVE) to model the
bounded structure of huAChE to yield the induced con-
formation of Y337.
To evaluate GEMDOCK, we first docked the bounded

ligand (E2020) into the binding sites of target protein
(tcAChE, 1EVE) and the modeled huAChE (Fig. 2).
Here, we defined that the binding site is the amino acids
enclosed within a radius of 8 Å relative to the E2020.
The RMSD of the ligand (E2020) between the predicted
(white) and x-ray structure (pink, tcAChE) is 1.73 Å. this
docked pose forms a stable stack force with W84, W279
and F330 with target proteins. In addition, for the
modeled huAChE, most docked poses of these 69
huAChE inhibitors in the data set form stable forces
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with residues W86, W286, and Y337. These results
show that GEMDOCK is able to generate reasonable
docked poses for huAChE and the modeled huAChE
structures.

Evaluation QSAR models on huAChE
We evaluated our QSAR methods on huAChE with a
public compound set [19]. The compound set includes
69 compounds with IC50 values and those ligands can be
grouped into four kinds of derivative. To compare our
method with previous method (Table 1), we used the
same performance metrics and data sets, including train-
ing set (53 compounds) and testing set (13 compounds)
[19]. The IC50 values of ligands range from 0.48 nM to
19,580 nM in the training set and 0.33 nM to 30,000 nM

in the testing set. To evaluate the core strategies of the
protein-ligand hot spots for QSAR models, we tested
our methods on all interaction features, the consensus
features statistically inferred from preliminary QSAR
models, and the features of specific skeletons (i.e.,
substitution function groups by discarding common
skeleton) (Table 2). For example, the total numbers of
the features are 223 (all features) and 156 (consensus
features) if we used atom-based interaction profiles.
Our GEMPLS method selected 36.2 and 22 features,
respectively, if we applied all interactions and consensus
interactions as the QSAR features (Table 2). In addition,
our QSAR method selected 10 interaction residues in
huAChE if we used the residue-based features (Table 3).
These selected residues were consensus interactions and
some residues play the key roles for the catalytic triad in
protein active site.
The common metrics were used to evaluate the quality

of QSAR models, including the q2 (cross-validated cor-
relation coefficient) in the training set and r2 (correlation
coefficient) in the testing set. To validate the stability of
the method for QSAR models, we built 30 models for
each kind of conditions and then evaluated the mean
and standard deviation values of q2 and r2. Table 1 shows

Table 1 Comparisons our method with Guo’ method

Our method Guo et al.

Docking Tool GEMDOCK GOLD

Features Atom/residue features Residue features

q2a 0.82 (mean) 0.72

r2b 0.723 (mean) 0.63
a,bThe q2 and r2 values are the means of 30 independent QSAR models

A

B

Fig. 4 Core strategies for the protein-ligand interaction hot spots. a Identify common/specific skeleton. The skeletons (blue circles) highly shared
by most inhibitors of a target protein is called common skeleton, the other parts are called specific skeletons (red squares). In general, the
common skeletons often form consensus interactions with key residues of the target protein and specific skeletons are often the substitution function
groups (e.g., R1, R2, R3, X, and Y) occupying specific functional subsites for lead optimization to increase the potency. b Infer consensus features from
preliminary QSAR models. Based on the selected features in preliminary QSAR models, we count the selected times (Ni) for each feature i and calculate
the average (μ) and standard deviation (σ) based on all features. The feature i is selected as consensus feature candidate if its Ni ≥ (μ-σ)
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the comparisons of our method with Guo et al.’ method
[19] in which they used GOLD for docking simulation
and residue-based descriptions. For Guo’ method, the q2

value is 0.72 and the r2 value is 0.69. Our method is very
comparative to their method and the q2 and r2 values are
0.81 and 0.72, respectively, on the same data set.
The q2 values of GEMPLS and GEMkNN using all

features (0.627 and 0.657, respectively) and consensus
interaction features (0.658 and 0.704, respectively) are
comparable (Table 2). For the r2 value, the GEMPLS
outperformed GEMkNN for this set. These two methods
consistently yielded stable accuracies when they used con-
sensus interaction features as the descriptors. In addition,
experimental results show that our methods can achieve
the best q2 (0.817) and r2 (0.723) values by using both con-
sensus and specific features by discarding the features of
common skeletons (Table 2).
To evaluate the biological meanings of our QSAR, we

observed the protein-compound complexes to check the
selected features/residues (Table 3). For example, the
residues S203 and H447 are catalytic triad in huAChE,
and the residue Y72 forms a wall to stabilize ligand and
W86 forms π-π interaction with choline. In addition, the
residues N87 and Y337 contribute the electrostatic force

in the active site, residue W286 affects the binding
affinity of AChE inhibitors, and residues Y124 and F338
provide hydrophobic contacts with bounded ligands.
These results reveal that our method is able to achieve
high accuracy QSAR models and reflect the biological
and structure meanings.

Common/specific skeletons of ligands
In general, the inhibitors of a target protein share highly
common skeletons (blue circles in Fig. 3a, Additional file 1:
Table S1, and Additional file 2: Table S2), which form key
interactions with key residues in the binding site of the
protein. For lead optimization, the substituent func-
tional groups (red squares, e.g., R1, R2, X, and Y in
Fig. 3a) on the branch of the common skeletons (blue
circles) are key to decide biological activities and potency of
these derivatives. However, these substituent functional
groups are often a small proportion in a ligand. To enhance
the accuracy of QSAR models and lead optimization, we
concentrated on features of the substituent groups by dis-
carding the features of common skeletons.

Real case study on AGHO
We have applied our methods to construct the QSAR
model of AGHO, which is the member of CuAOs family
(Fig. 5). Based on our QSAR model, we identified a new
AGHO inhibitor. CuAOs are important for ubiquitous
and have a variety of function in the metabolism of
biogenic primary amines. Here, we do not show the
details of the modelling AGHO structures, collecting
compound data set, generating protein-inhibitor interac-
tions, constructing QSAR models, and the bioassay assays.
Our results show that the side-chain length of substrates

is highly correlated to the compound affinity (Fig. 5). The
predicted IC50 values of our QSAR model increase with
the increase of side-chain length and are highly related to
real experimental test values. This tendency is similar to
the phenomenon among phenylethylamine, phenylpropy-
lamine and phenylbutylamine. We used GEMDOCK to
screen the similar compounds of phenylethylamine from a

Table 2 Accuracies of our method using different protein-ligand interaction profiles on huAChE set

All interaction profilea Consensus feature profileb

GEMPLS GEMkNN GEMPLS GEMkNN Specificg Skeleton

No. of total features (atoms) 223 223 78 156 92

No. of selected features (atoms) 36.2 36.1 22 29.8 23.5

Average of q2 (Training)c 0.627 0.657 0.658 0.704 0.817

Average of r2 (Testing)d 0.402 0.123 0.467 0.063 0.723

Standard derivation of q2e 0.015 0.018 0.004 0.009 0.006

Standard derivation of r2f 0.125 0.095 0.085 0.050 0.056
a,bUsing all and only consensus interaction profiles as descriptions, respectively
c,dThe average q2 and r2 values of 30 times for the training set and testing set, respectively
e,fThe standard deviation q2 and r2 values of 30 times for the training set and testing set, respectively
gUsing the interaction profiles of both consensus feature profile and specific skeleton

Table 3 Selected residues and biological meanings of huAChE
QSAR model

Selected residue Descriptions

TYR72 Stabilize ligand ring

TRP86 Forming π-π interaction to stabilize ligand

ASN87 Electrostatic contributors in the gorge area

TYR124 Form hydrophobic contacts with ligand

SER203 Catalytic triad

TRP286 Enhance the activity of ligand with polar groups

TYR337 Electrostatic contributors in the gorge area

PHE338 Form hydrophobic contacts with ligand

TYR341 The residue in the local pocket

HIS447 Catalytic triad
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public database. We discovered the benzylamine as a
potential substrate and then utilized our QSAR model to
predict its affinity (1.077) which is similar to experimental
bioassay value (1.261) (Fig. 5). This result suggests that the
hydrophobicity is one of the essential factors (common
skeleton) and the side-chain length (specific skeletons)
determines the affinity for AGHO. In addition, our QSAR
selected some important residues, such as Asp 317 is the
proton acceptor of AGHO, the residues Ala 155, Pro 156,
Tyr315 and Phe 426 forming the hydrophobic pocket [28].
These experimental results show that our method can
build the QSAR models of AGHO for discovering new
substrates and revealing biological meanings.

Conclusion
We have integrated in-house tools, GEMDOCK and
GEMPLS, with new strategies to identify the protein-
ligand hot spots for building QSAR models, lead dis-
covery and optimization. Experimental results show
that these strategies are able to enhance the advantages
of virtual screening and QSAR by identifying the con-
sensus interaction profiles and common skeletons. In
addition, the specific skeletons of compounds are useful
for lead optimization and improving the performance
of QSAR models by reducing the number of features.
Furthermore, the selected features of QSAR models provide

the clues for protein functions and binding mechanisms.
Our methods and strategies successfully discovered a new
substrate for AGHO. These results demonstrate that our
methods with new strategies are useful to yield stable and
high accuracy QSAR models for discovering new leads and
guiding lead optimization.
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Fig. 5 The relationship between experimental values and predicted affinities of AGHO QSAR model. The side-chain length of compound is highly
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