178,185 research outputs found

    Potential barrier of Graphene edges

    Full text link
    We calculated row resolved density of states, charge distribution and work function of graphene's zigzag and armchair edge (either clean or terminated alternatively with H, O or OH group). The zigzag edge saturated via OH group has the lowest work function of 3.76 eV, while the zigzag edge terminated via O has the highest work function of 7.74 eV. The angle-dependent potential barrier on the edge is fitted to a multi-pole model and is explained by the charge distribution.Comment: 16 pages, 8 figures. Copyright (2011) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article appeared in (J. Appl. Phys. 109 (2011) 114308) and may be found at (http://link.aip.org/link/?JAP/109/114308

    SOS-convex Semi-algebraic Programs and its Applications to Robust Optimization: A Tractable Class of Nonsmooth Convex Optimization

    Get PDF
    In this paper, we introduce a new class of nonsmooth convex functions called SOS-convex semialgebraic functions extending the recently proposed notion of SOS-convex polynomials. This class of nonsmooth convex functions covers many common nonsmooth functions arising in the applications such as the Euclidean norm, the maximum eigenvalue function and the least squares functions with 1\ell_1-regularization or elastic net regularization used in statistics and compressed sensing. We show that, under commonly used strict feasibility conditions, the optimal value and an optimal solution of SOS-convex semi-algebraic programs can be found by solving a single semi-definite programming problem (SDP). We achieve the results by using tools from semi-algebraic geometry, convex-concave minimax theorem and a recently established Jensen inequality type result for SOS-convex polynomials. As an application, we outline how the derived results can be applied to show that robust SOS-convex optimization problems under restricted spectrahedron data uncertainty enjoy exact SDP relaxations. This extends the existing exact SDP relaxation result for restricted ellipsoidal data uncertainty and answers the open questions left in [Optimization Letters 9, 1-18(2015)] on how to recover a robust solution from the semi-definite programming relaxation in this broader setting

    Hidden Fermi-liquid charge transport in the antiferromagnetic phase of the electron-doped cuprates

    Full text link
    Systematic analysis of the planar resistivity, Hall effect and cotangent of the Hall angle for the electron-doped cuprates reveals underlying Fermi-liquid behavior even deep in the antiferromagnetic part of the phase diagram. The transport scattering rate exhibits a quadratic temperature dependence, and is nearly independent of doping, compound and carrier type (electrons vs. holes), and hence universal. Our analysis moreover indicates that the material-specific resistivity upturn at low temperatures and low doping has the same origin in both electron- and hole-doped cuprates.Comment: To appear in PR

    Experimental and Numerical Investigation of Thermal Performance of a Crossed Compound Parabolic Concentrator with PV Cell

    Get PDF
    Crossed compound parabolic concentrator (CCPC) is a solar energy device used to increase the photovoltaic (PV) cell electrical power output. CCPC’s thermal and optical performance issues are equally important for a PV cell or module to work under a favourable operating condition. However, most work to-date is emphasised on its optical performance paying a little attention to the thermal characteristics. In this contribution, we investigate the thermal performance of a CCPC with PV cell at four different beam incidences (0o, 10o, 20o, 30o and 40o). Initially, experiment is performed in the indoor PV laboratory at the University of Exeter with 1kW/m2 radiation intensity. 3D simulations are carried out to first validate the predicted data and then to characterise the overall performance. Results show that the temperature in the PV silicon layer is the highest at 0o and 30o, with the top glass cover of CCPC having the lowest temperature at all the incidences. The temperature and optical efficiency profiles at the various incidences predicted by simulation show very good agreement with the measurements, especially at 0o incidence. This study provides useful information for understanding the coupled optical-thermal performance of the CCPC with PV cell working at various conditions

    Evidence for a quantum phase transition in electron-doped Pr2x_{2-x}Cex_{x}CuO4δ_{4-\delta} from Thermopower measurements

    Full text link
    The evidence for a quantum phase transition under the superconducting dome in the high-TcT_c cuprates has been controversial. We report low temperature normal state thermopower(S) measurements in electron-doped Pr2x_{2-x}Cex_{x}CuO4δ_{4-\delta} as a function of doping (x from 0.11 to 0.19). We find that at 2K both S and S/T increase dramatically from x=0.11 to 0.16 and then saturate in the overdoped region. This behavior has a remarkable similarity to previous Hall effect results in Pr2x_{2-x}Cex_{x}CuO4δ_{4-\delta} . Our results are further evidence for an antiferromagnetic to paramagnetic quantum phase transition in electron-doped cuprates near x=0.16.Comment: 4 pages, 5 figure

    Natural convective heat transfer in a walled CCPC with PV cell

    Get PDF
    The free convective heat transfer phenomenon in an isolated, walled CCPC with PV cell is studied experimentally at 1000 W/m2 irradiance and 28.5 °C ambient temperature as well as 0°, 10°, 20°, 30° and 40° incidences in indoor laboratory by using solar simulator. Then a series of numerical simulations are launched to estimate the CCPC natural heat transfer behaviour and optical performance based on steady heat transfer and laminar flow models with grey optical option. It is identified that the heat transfer and optical performances of CCPC are dependent on the incidence. Especially, the PV cell is subject to the highest temperature at an incidence less than 20°, and otherwise the top glass cover is with the highest temperature. The predicted temperatures, Nusselt numbers and heat loss ratios are consistent with the experimental observations basically, especially at the incidence less than 20° with (−10.1~+3) % error in temperature, (−35.6~+12.6) % in Nusselt number, and (−1.2~+20.5) % in CCPC wall heat loss ratio. The optical parameters predicted agree very well with the measurements. The heat loss from the CCPC walls accounts for nearly 60% of the total incoming solar irradiance and should be paid significant attention in the design of CCPC

    Ratcheting Heat Flux against a Thermal Bias

    Full text link
    Merely rocking the temperature in one heat bath can direct a steady heat flux from cold to hot against a non-zero thermal bias in stylized nonlinear lattice junctions that are sandwiched between two heat baths. Likewise, for an average zero-temperature difference between the two contacts a net, ratchet-like heat flux emerges. Computer simulations show that this very heat flux can be controlled and reversed by suitably tailoring the frequency (\lesssim 100 MHz) of the alternating temperature field.Comment: 5 pages, 6 figure
    corecore