646 research outputs found

    Research of Probability Symmetric Allocation Storage in Distributed Storage System

    Get PDF
    The goal of optimal allocation is to increase the stored data availability subject to minimize the storage budget. The symmetric allocation based on the network coding is proved to be optimal without considering the nodes availability in distributed storage system. Because of network conditions and node inherent property, each node has different availability. This paper focuses on the optimization distributed data storage problem with nodes availability. Based on probability model of storage system, we re-define the symmetric allocation as the probability symmetric allocation, and proposed probability symmetric allocation model and strategy which are proved to be optimal in the general condition based on SVM. Comparing to the symmetric allocation proposed by Leong D. et al., The proposed probability symmetric allocation scheme improves the data availability, and is more practical method for distributed storage system. DOI : http://dx.doi.org/10.11591/telkomnika.v12i5.510

    An evaluation of membrane properties and process characteristics of a scaled-up pressure retarded osmosis (PRO) process

    Get PDF
    YesThis work presents a systematic evaluation of the membrane and process characteristics of a scaled-up pressure retarded osmosis (PRO). In order to meet pre-defined membrane economic viability ( ≥ 5 W/m2), different operating conditions and design parameters are studied with respect to the increase of the process scale, including the initial flow rates of the draw and feed solution, operating pressure, membrane permeability-selectivity, structural parameter, and the efficiency of the high-pressure pump (HP), energy recovery device (ERD) and hydro-turbine (HT). The numerical results indicate that the performance of the scaled-up PRO process is significantly dependent on the dimensionless flow rate. Furthermore, with the increase of the specific membrane scale, the accumulated solute leakage becomes important. The membrane to achieve the optimal performance moves to the low permeability in order to mitigate the reverse solute permeation. Additionally, the counter-current flow scheme is capable to increase the process performance with a higher permeable and less selectable membrane compared to the co-current flow scheme. Finally, the inefficiencies of the process components move the optimal APD occurring at a higher dimensionless flow rate to reduce the energy losses in the pressurization and at a higher specific membrane scale to increase energy generation

    Phase Transformation of Coal Ash under Biochemical Condition and Its Significance

    Get PDF
    China University of GeosciencesPromoting Environmental Pesearch in Pan-Japan Sea Area : Young Researchers\u27 Network, Schedule: March 8-10,2006,Kanazawa Excel Hotel Tokyu, Japan, Organized by: Kanazawa University 21st-Century COE Program, Environmental Monitoring and Prediction of Long- & Short- Term Dynamics of Pan-Japan Sea Area ; IICRC(Ishikawa International Cooperation Research Centre), Sponsors : Japan Sea Research ; UNU-IAS(United Nations University Institute of Advanced Studies)+Ishikawa Prefecture Government ; City of Kanazaw

    Application of Fibonacci Sequence and Lucas Sequence on the Design of the Toilet Siphon Pipe Shape

    Get PDF
    The purpose of this study was to explore the method for designing the toilet siphon pipe shape to improve flushing performance. The Fibonacci sequence and the Lucas sequence were used to design the structural parameters of the siphon pipe. The flushing processes of the toilet were simulated using the computational fluid dynamics (CFD) method to analyze the flushing performance under different siphon pipe shapes. Experimental studies were conducted to verify the reliability of the simulation results. The results indicated that when the Lucas numbers and the Fibonacci numbers were utilized to regulate the curvature of the siphon pipe in the Xi direction and the Yj direction respectively, the flushing performance of the toilet was optimal. In order to obtain better flushing performance, the curvature of the siphon pipe should be smooth and have obvious transitions at the connections of different sections. When the overall size of the siphon pipe is kept constant, a short siphon pipe length is helpful for the improvement of toilet flushing performance

    Study on the Influence of Toilet Siphon Pipe Shape on Flushing Performance

    Get PDF
    The goal of this work was to explore the influence of toilet siphon pipe shape on flushing performance. The flushing processes of a toilet under different shape parameters were simulated by using computational fluid dynamics (CFD) with a volume of fluid (VOF) multiphase model. The effects of siphon pipe shape on flushing performance were analyzed in detail. The interpretation of the simulation results was experimentally validated. The results reveal that a toilet may obtain good flushing performance under one single shape parameter when the climbing angle, the arc width, the arc height, the pipe diameter, the climbing width, and the climbing height are about 48°, 45 mm, 210 mm, 50 mm, 90 mm and 30 mm, respectively. With the increase of the siphon pipe diameter, the toilet flushing performance peaks in the range between 50 and 53 mm rather than continuing to improve. In order to reasonably evaluate the flushing effect of the toilet, all flow parameters on a characteristic cross section of the siphon pipe, including the average velocity, the average pressure and the average mass flow rate, should be comprehensively considered instead of one single parameter. The findings of this study provide a reference for the pipe shape design of toilets

    C500 variants conveying complete mucosal immunity against fatal infections of pigs with Salmonella enterica serovar Choleraesuis C78-1 or F18+ Shiga toxin-producing Escherichia coli

    Get PDF
    Salmonella enterica serovar Choleraesuis (S. Choleraesuis) C500 strain is a live, attenuated vaccine strain that has been used in China for over 40 years to prevent piglet paratyphoid. However, this vaccine is limited by its toxicity and does not offer protection against diseases caused by F18+ Shiga toxin-producing Escherichia coli (STEC), which accounts for substantial economic losses in the swine industry. We recently generated a less toxic derivative of C500 strain with both asd and crp deletion (S. Choleraesuis C520) and assessed its efficacy in mice. In addition, we demonstrate that C520 is also less toxic in pigs and is effective in protecting pigs against S. Choleraesuis when administered orally. To develop a vaccine with a broader range of protection, we prepared a variant of C520 (S. Choleraesuis C522), which expresses rSF, a fusion protein comprised of the fimbriae adhesin domain FedF and the Shiga toxin-producing IIe B domain antigen. For comparison, we also prepared a control vector strain (S. Choleraesuis C521). After oral vaccination of pigs, these strains contributed to persistent colonization of the intestinal mucosa and lymphoid tissues and elicited both cytokine expression and humoral immune responses. Furthermore, oral immunization with C522 elicited both S. Choleraesuis and rSF-specific immunoglobulin G (IgG) and IgA antibodies in the sera and gut mucosa, respectively. To further evaluate the feasibility and efficacy of these strains as mucosal delivery vectors via oral vaccination, we evaluated their protective efficacy against fatal infection with S. Choleraesuis C78-1, as well as the F18+ Shiga toxin-producing Escherichia coli field strain Ee, which elicits acute edema disease. C521 conferred complete protection against fatal infection with C78-1; and C522 conferred complete protection against fatal infection with both C78-1 and Ee. Our results suggest that C520, C521, and C522 are competent to provide complete mucosal immune protection against fatal infection with S. Choleraesuis in swine and that C522 equally qualifies as an oral vaccine vector for protection against F18+ Shiga toxin-producing Escherichia coli

    Reflectance and Carbon Isotopes of Kerogen in Lower Cambrian Black Shales of Zunyi and Zhangjiajie, Southwest China : Indicators to the Source of Au-Ag-PGE

    Get PDF
    China University of GeosciencesInstitute of Geochemistry, Academia SinicaScedule:17-18 March 2003, Vemue: Kanazawa, Japan, Kanazawa Citymonde Hotel, Project Leader : Hayakawa, Kazuichi, Symposium Secretariat: XO kamata, Naoto, Edited by:Kamata, Naoto

    Thermoluminescence (TL) analysis for otoliths of the wild carps (cyprinoid) from Baiyangdian Lake and Miyun Reservoir: Some implications for monitoring water environment

    Get PDF
    Otolith is a typical biomineral carrier growing on insides of fish skull with prominent zoning structure formed by alternating layers of protein and calcium carbonate growing around the nucleus. Even though thermoluminescence (TL) analysis on biomineral has been widely used to measure the radiation exposure in the recent twenty years, the TL characteristics of the fish otolith have not yet been reported in literature. TL characteristics of otoliths from the wild carps (cyprinoid) living in the Baiyangdian Lake, Hebei Province and Miyun Reservoir, Beijing City was first studied, and the differences of energy gap (E) between the fish otoliths in the two waters have also been discussed in this paper. The experimental results indicated that TL curve parameters: peak temperature (Tp), luminous intensity (I), integrated intensity (S) and middle width (Wm) for the glow curves of the cyprinoid otoliths from Baiyangdian Lake are greater than those from Miyun reservoir, and the stability of the formers’ TL curve parameters value and energy gap (E) was weaker than the latter. In comparison to the Miyun Reservoir, the analysis manifested that the electrons and vacancies trapped in the otoliths from Baiyangdian Lake are more likely to escape. According to the investigation, the contaminative degree and eutrophication in the water of Baiyangdian Lake was heavier than that of Miyun Reservoir. Therefore, the characteristics of TL growth curves of the cyprinoid otoliths is quite sensitive to heavier contaminated and less contaminated water, and this could be regarded as an important typomorphic biomineral for monitoring the contaminative degree and environment change of the water.Keywords: Cyprinoid otoliths, thermoluminescence, water environment, typomorphic minera

    Temporary trigeminal ganglion stimulation can improve zoster-related trigeminal neuralgia: a retrospective study in a single center

    Get PDF
    IntroductionConventional management approaches have been challenged in dealing with zoster-related trigeminal neuralgia. Percutaneous trigeminal ganglion stimulation (TGS) has been rarely reported as a potential treatment option for alleviating pain associated with this condition. The present study investigated the application of percutaneous TGS in a series of patients suffering from Zoster-related trigeminal neuralgia to evaluate its potential efficacy of pain relief.MethodsWe retrospectively reviewed the medical records of all patients who underwent TGS at the Department of Pain Management, Second Affiliated Hospital of Guangxi Medical University. All patients were followed for up to 6 months. Clinical data, including the Visual Analog Scale (VAS), Pittsburgh Sleep Quality Index (PSQI), and medication consumption were recorded before and after treatment. Adverse events related to the treatment were also documented.ResultsA total of nine patients underwent percutaneous TGS for Zoster-related trigeminal neuralgia. Among these patients, five (56%) experienced more than 50% pain relief at discharge. At the six-month follow-up, the mean VAS score decreased from preoperative 6.1 ± 1.5 to 2.5 ± 1.9, demonstrating a statistically significant reduction (t = 4.36, p < 0.05). The PSQI also showed a significant reduction from a baseline score of 14.1 to 6.5 at the six-month follow-up (Z = 4.2, p < 0.05). Seven patients reported satisfaction with the treatment and no serious adverse events occurred.DiscussionThe results of the present study suggest that this contributes growing evidence that percutaneous TGS may be an effective treatment for Zoster - related trigeminal neuralgia

    First fracture characteristics of main roof plate structure with goaf (coal pillar) on both sides and elastic-plastic foundation boundary

    Get PDF
    In order to study the fracture position and engineering significance of the main roof plate structure under the condition of goaf on both sides (coal pillars), the double plasticized foundation boundary mechanical model of the main roof plate structure considering the elastic-plastic deformation of coal and the width and support capacity weakening of coal pillar on both sides is constructed. Based on the finite difference algorithm and the principal moment breaking criterion, the shape characteristics, location attributes and overall position characteristics of the main roof fault line above the asymmetric coal pillars area and the long side solid coal area are systematically calculated, and the new conclusions and important engineering significance of the new model are clarified by comparing with the traditional models from seven levels and four pairs of areas in transverse and longitudinal directions. The conclusions are as follows: ① The asymmetric coal pillars parameters on both sides have little influence on the main roof principal bending moment and fracture position above the long side solid coal area, but significantly affect the principal bending moment, position and fracture shape of the main roof above the coal pillar areas respectively. There are three types of evolution patterns of the main roof fracture line above the coal pillar areas on both sides (strong/wide coal pillar area + weak/narrow coal pillar area). With the increase of main roof thickness and elastic modulus, while coal pillars width, coal pillar bearing capacity and working face span decrease, its evolution law is as follows: asymmetric “continuous single arc + continuous single arc”→ “continuous single arc + open discontinuous double short arc”→ asymmetric “open discontinuous double short arc + open discontinuous double short arc”. ② The fracture line of the main roof above the long side solid coal area mainly has three types of location attributes. With the increase of main roof thickness and elastic modulus, while the plastic zone width and plasticization degree of solid coal and working face span decrease, its evolution law is as follows: the fracture line is above the plastic coal area (C-S type) → elastoplastic coal boundary area (C-TS type) → elastic coal area (C-T type). ③ With the increase of coal pillars width, coal pillar bearing capacity and working face span decrease, and considering the location attribute of the fracture line, the fracture mode and evolution law of the whole area of the main roof are as follows: the mode of C-S ()→the mode of C-TS ()→the mode of C-T ()→ mode of C-T ()→the mode of C-T (). Aiming at the three kinds of mechanical models for studying the fracture of the main roof plate structure with goaf (coal pillar) on both sides, the important differences of the three kinds of models are compared from seven levels, and its important engineering role is expounded from four transverse areas (front and rear of the mining area, coal pillar areas on both sides) and four longitudinal areas (asymmetric left coal pillar underlying and underlying mining space output/input coal pillar/body)
    corecore