45 research outputs found

    Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain

    Get PDF
    Additional file 3. Fermentation profiles of Y133 and Y133-IIL in the presence of 1 % [BMIM]Cl at pH 6.5 and pH 5.0, and either aerobic or anaerobic conditions (n = 3, Mean ± S.E, except n = 2 for Y133 pH 6.5 anaerobic 72 h)

    Inhibition of Golgi function causes plastid starch accumulation

    Get PDF
    Little is known about possible interactions between chloroplasts and the Golgi apparatus, although there is increasing evidence for a direct Golgi to chloroplast transport pathway targeting proteins to their destinations within the membranes and stroma of plastids. Here data are presented showing that a blockage of secretion results in a significant increase of starch within plastids. Golgi disassembly promoted either by the secretory inhibitor brefeldin A or through an inducible Sar1-GTP system leads to dramatic starch accumulation in plastids, thus providing evidence for a direct interaction between plastids and Golgi activity. The possibility that starch accumulation is due either to elevated levels of cytosolic sugars because of loss of secretory Golgi activity or even to a blockage of amylase transport from the Golgi to the chloroplast is discussed

    Training in childhood obesity management in the United States: a survey of pediatric, internal medicine-pediatrics and family medicine residency program directors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Information about the availability and effectiveness of childhood obesity training during residency is limited.</p> <p>Methods</p> <p>We surveyed residency program directors from pediatric, internal medicine-pediatrics (IM-Peds), and family medicine residency programs between September 2007 and January 2008 about childhood obesity training offered in their programs.</p> <p>Results</p> <p>The response rate was 42.2% (299/709) and ranged by specialty from 40.1% to 45.4%. Overall, 52.5% of respondents felt that childhood obesity training in residency was extremely important, and the majority of programs offered training in aspects of childhood obesity management including prevention (N = 240, 80.3%), diagnosis (N = 282, 94.3%), diagnosis of complications (N = 249, 83.3%), and treatment (N = 242, 80.9%). However, only 18.1% (N = 54) of programs had a formal childhood obesity curriculum with variability across specialties. Specifically, 35.5% of IM-Peds programs had a formal curriculum compared to only 22.6% of pediatric and 13.9% of family medicine programs (p < 0.01). Didactic instruction was the most commonly used training method but was rated as only somewhat effective by 67.9% of respondents using this method. The most frequently cited significant barrier to implementing childhood obesity training was competing curricular demands (58.5%).</p> <p>Conclusions</p> <p>While most residents receive training in aspects of childhood obesity management, deficits may exist in training quality with a minority of programs offering a formal childhood obesity curriculum. Given the high prevalence of childhood obesity, a greater emphasis should be placed on development and use of effective training strategies suitable for all specialties training physicians to care for children.</p

    “I should have …”:A Photovoice Study With Women Who Have Lost a Man to Suicide

    Get PDF
    While the gendered nature of suicide has received increased research attention, the experiences of women who have lost a man to suicide are poorly understood. Drawing on qualitative photovoice interviews with 29 women who lost a man to suicide, we completed a narrative analysis, focused on describing the ways that women constructed and accounted for their experiences. We found that women’s narratives drew upon feminine ideals of caring for men’s health, which in turn gave rise to feelings of guilt over the man’s suicide. The women resisted holding men responsible for the suicide and tended to blame themselves, especially when they perceived their efforts to support the man as inadequate. Even when women acknowledged their guilt as illogical, they were seemingly unable to entirely escape regret and self-blame. In order to reformulate and avoid reifying feminine ideals synonymous with selflessly caring for others regardless of the costs to their own well-being, women’s postsuicide bereavement support programs&nbsp; hould integrate a critical gender approach

    Arsenite-induced pseudo-hypoxia results in loss of anchorage-dependent growth in BEAS-2B pulmonary epithelial cells.

    No full text
    Epidemiology studies have established a strong link between lung cancer and arsenic exposure. Currently, the role of disturbed cellular energy metabolism in carcinogenesis is a focus of scientific interest. Hypoxia inducible factor-1 alpha (HIF-1A) is a key regulator of energy metabolism, and it has been found to accumulate during arsenite exposure under oxygen-replete conditions. We modeled arsenic-exposed human pulmonary epithelial cells in vitro with BEAS-2B, a non-malignant lung epithelial cell line. Constant exposure to 1 µM arsenite (As) resulted in the early loss of anchorage-dependent growth, measured by soft agar colony formation, beginning at 6 weeks of exposure. This arsenite exposure resulted in HIF-1A accumulation and increased glycolysis, similar to the physiologic response to hypoxia, but in this case under oxygen-replete conditions. This "pseudo-hypoxia" response was necessary for the maximal acquisition of anchorage-independent growth in arsenite-exposed BEAS-2B. The HIF-1A accumulation and induction in glycolysis was sustained throughout a 52 week course of arsenite exposure in BEAS-2B. There was a time-dependent increase in anchorage-independent growth during the exposure to arsenite. When HIF-1A expression was stably suppressed, arsenite-induced glycolysis was abrogated, and the anchorage-independent growth was reduced. These findings establish that arsenite exerts a hypoxia-mimetic effect, which plays an important role in the subsequent gain of malignancy-associated phenotypes

    Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain

    No full text
    Abstract Background Imidazolium ionic liquids (IILs) underpin promising technologies that generate fermentable sugars from lignocellulose for future biorefineries. However, residual IILs are toxic to fermentative microbes such as Saccharomyces cerevisiae, making IIL-tolerance a key property for strain engineering. To enable rational engineering, we used chemical genomic profiling to understand the effects of IILs on S. cerevisiae. Results We found that IILs likely target mitochondria as their chemical genomic profiles closely resembled that of the mitochondrial membrane disrupting agent valinomycin. Further, several deletions of genes encoding mitochondrial proteins exhibited increased sensitivity to IIL. High-throughput chemical proteomics confirmed effects of IILs on mitochondrial protein levels. IILs induced abnormal mitochondrial morphology, as well as altered polarization of mitochondrial membrane potential similar to valinomycin. Deletion of the putative serine/threonine kinase PTK2 thought to activate the plasma-membrane proton efflux pump Pma1p conferred a significant IIL-fitness advantage. Conversely, overexpression of PMA1 conferred sensitivity to IILs, suggesting that hydrogen ion efflux may be coupled to influx of the toxic imidazolium cation. PTK2 deletion conferred resistance to multiple IILs, including [EMIM]Cl, [BMIM]Cl, and [EMIM]Ac. An engineered, xylose-converting ptk2∆ S. cerevisiae (Y133-IIL) strain consumed glucose and xylose faster and produced more ethanol in the presence of 1 % [BMIM]Cl than the wild-type PTK2 strain. We propose a model of IIL toxicity and resistance. Conclusions This work demonstrates the utility of chemical genomics-guided biodesign for development of superior microbial biocatalysts for the ever-changing landscape of fermentation inhibitors

    Effect of suppressed HIF-1A expression on arsenite mediated transformation.

    No full text
    <p>A) Immunoblot analysis of HIF-1A knockdown in BEAS-2B, short immunoblot exposure shown for MG132-treated samples; long immunoblot exposure shown for MG132-untreated samples. B) QPCR for HIF-1A mRNA. Bars represent mean, +1 standard deviation, from 5 experimental replicates. C) Lactate levels (percent control) in arsenite-exposed (denoted “As”, exposed for 8 weeks) and unexposed control (denoted “Ct”) BEAS-2B stably transfected with scrambled control shRNA (denoted “Vector”) or with shRNA targeting HIF1A (denoted “shHIF1A”) expression. Absolute lactate production in vector control: 0.696±0.04 µmol/10<sup>6</sup>cells/hr). Bars represent mean, +1 standard deviation, from 3 experimental replicates. D) Colony count of soft agar assay from BEAS-2B cells treated as described above in panel C. Bars represent mean, +1 standard deviation, from 3 experimental replicates. *p<0.05.</p
    corecore